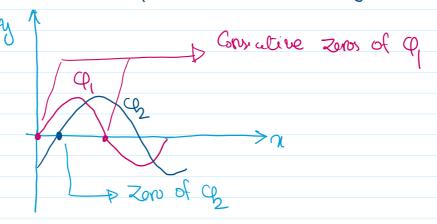
October 7 (Monday) - Lecture 1

Sturm Theory (Unit 1)

- Sturm Separation Theorem
 Sturm Comparison Theorem

Context: L[y] = 0; where L[y] = y''(x) + a(x)y'(x) + b(x)y(x)

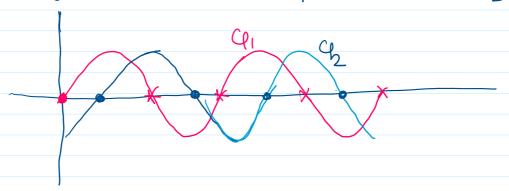
· Let of and of are two linearly and solutions of L(y) = 0 SST: Foros of Cp are "separated" by zoros of & and v.v.



Example: g"+ g = 0

CF: 22+ 1=0 ⇒ 2= ±i

Linearly ind solutions are q(n) = Sinn and q(n) = Cos n.

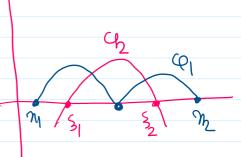


Theorem C Steurm separation) Suppose that any and are two linearly independent solutions of [[4] =0 Then, in between any two consecutive zeros of q, I exactly one zero of cp and vice versa.

Proof. Assume that my and my are two zoros of CP,

and whose assume thet $\gamma_1 < \gamma_2$. $(\varphi_1(\gamma_1) = 0 = \varphi_1(\gamma_2))$ $\mathcal{W}(\varphi_{1},\varphi_{2}, \chi_{1}) = \det \begin{bmatrix} \varphi_{1}(\chi_{1}) & \varphi_{2}(\chi_{1}) \\ \varphi_{1}(\chi_{1}) & \varphi_{2}(\chi_{1}) \end{bmatrix} = \varphi_{1}(\chi_{1})\varphi_{2}(\chi_{1})$ $= \varphi_{1}(\chi_{1})\varphi_{1}(\chi_{1})$ $= \varphi_{2}(\chi_{1})\varphi_{1}(\chi_{1})$ $= \varphi_{2}(\chi_{1})\varphi_{1}(\chi_{1})$ $= -\mathcal{G}(\lambda_1)\varphi_1(\lambda_1) \Rightarrow \mathcal{G}(\lambda_1) \neq 0$ COW, Q, and G become LD) Similarly Ch (m) 70 If possible assume that G(n) > 0 & n ∈ (n, n) and $-Q_{g}(\chi_{i})\neq 0$ We can define the $f^{\underline{D}}$ $u = \frac{cl_1}{cl}$ on (n_1, n_2) (n_1, n_2) ય (ગુ = ૦, ય (ગુ) = 0 By Rolle's Thm, I & & (n, n) such that $Q(\zeta) = 0$ $u'(s) = \frac{c_2(s)}{2}(s) - \frac{c_2(s)}{2}(s)$ But G²(5) $= - w(\varphi, \varphi, 3)/\varphi^{2}(\xi) = 0$ \Rightarrow - $\mathbb{W}(\varphi_{1}, \varphi_{2}; \S) = 0$ this is not possible as eq and eq are LI- \Rightarrow I at least one 3000 of (2, 2). Suppose there are two zeros of G blu ny and ny then, same arguments reveal thed

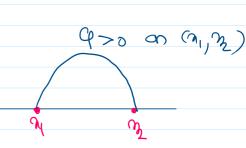
then, same arguments reveal thed I a sero of of of between sera of of (31 & 32) This violates the a multiveness of Beros of Cp and Cp.



Theorem Lot quo so in the incorval (n, n) Then any nontrivial solution of of the egh g" + q my = 0

has at the most one zoro in (n, n). grow. Suppose that my and my (my < my) are two considering 3010s of φ , and whog $\varphi > 0$ on (n_1, n_2) .

Claim: (p. (n) >0 If $\varphi'(x_1) = 0$, then the renique solution is Q=0, which violates the hypothesis thed P is a non-tronval solution



cp (a) <0, then there exists a small enough and around my such that co co in this is also not possible (p>0 on (n, n).

therefore $\varphi(x_1) > 0$ Similary q (m) <0-

We we
$$Q^{(1)}(n) = -q(n)Q(n)$$
 $Y n \in (n_1, n_2)$

> 0

=) of is a monotonically increasing function

	$0 > \varphi^{\prime}(\eta_{1}) > \varphi^{\prime}(\eta_{1}) > 0.$													
this i	1 a	Contro	diction	າ .	The refo) he	O	Can not	R	ave	(-00	30105	•	
							7			_		9 3		