Ordinary differential equations

Assignment 2

(Existence theorems, maximal interval of existence, Wronskain, variation of parameters)

August-November Semester

Department of Mathematics, Indian Institute of Technology Palakkad

12 September, 2024 (Thursday) Due: 23 September, 2024 (11:50 PM) (Monday) In Moodle.

Instructor. Dr Gopikrishnan Chirappurathu Remesan

1. Construct all possible solutions of the ordinary differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y}{x}$$

on \mathbb{R} . Among these solutions, find a unique solution on the largest subinterval of \mathbb{R} .

2. Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{3/4}$$

For a very small real number $\varepsilon > 0$, let φ_{ε} and φ denote the solutions for the above equation with the initial conditions $\varphi_{\varepsilon}(0) = 0$ and $\varphi(0) = \varepsilon$, respectively. Find these solutions such that $|\varphi(x) - \varphi_{\varepsilon}(x)| \to 0$ as $x \to 0$.

- 3. Let $y'(x) = |y|^{-3/4}y + x \sin(\pi/x)$ with the initial condition x(0) = 0. Show that the Cauchy-Peano approximation (piecewise polygonal approximation) need not converge as $\varepsilon \to 0$.
- 4. Use the Wronskian to prove that two solutions of the homogenenous equation y'' + P(x)y' + Q(z)y = 0on an interval [a, b] is linearly dependent if
 - (a) they have a common zero x_0 in the interval
 - (b) they have maxima or minima at the same point x_0 in the interval.
- 5. Find particular solutions of the following equations using the method of variation of parameters.

(a)
$$y'' + y = \sec(x)$$

- (b) $y'' + y = \cot^2(x)$
- (c) $y'' + y = \sec(x) \tan(x)$

(d)
$$y'' + y = x \cos(x)$$

(e) $y'' + 2y' + 5y = \exp(-x)\sec(2x)$.

2024