DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY, PALAKKAD

Test 1

MA1011A: Linear Algebra and Series	Date: $05/09/2024$ (Thursday)
Max. Marks: 20	Time: 08:00 -08:50 AM

Instructions:

- (a) Cell phones and scientific calculators are **not** allowed within the exam hall.
- (b) No doubts will be clarified by the invigilators/course instructors.
- (c) Please state all the results which you use and justify your answers.
- (1) Let A and B be $n \times n$ matrices. Suppose $AB = I_n$ (the identity matrix). In this problem, you will show $BA = I_n$ and thus $B = A^{-1}$. This is a multipart problem and if you are unable to solve one part, you can still attempt the subsequent parts assuming the conclusion of prior parts.
 - (a) (3 Marks) Show that if C is another $n \times n$ matrix such that $CA = I_n$ then B = C.
 - (b) (2 Marks) Find an $n \times n$ invertible matrix P such that PA is in RREF.
 - (c) (1 Mark) Show that the bottom row of P cannot be 0.
 - (d) (3 Marks) Use the previous parts to conclude that P = B and thus A is invertible.
- (2) (a) (2 Marks) Let V be a vector space and let $v, w \in V$. Show that if v and w are linearly independent then either v = cw or w = cv for some $c \in \mathbb{R}$.
 - (b) (3 Marks) Fix a positive natural number n. Show that we can find n vectors $v_1, \ldots, v_n \in \mathbb{R}^2$ such that any pair $v_i, v_j, i \neq j$ are linearly independent.
 - (c) (3 Marks) Let $v_1, \ldots, v_k \in \mathbb{R}^m$ be such that $v_i \cdot v_j = 0$ (the dot product) whenever $i \neq j$. Show that v_1, \ldots, v_k are linearly independent.
- (3) (3 Marks) Using row operations, find the inverse of the matrix

$$\begin{bmatrix} 2 & 1 & 2 \\ 0 & 3 & -1 \\ 4 & 1 & 1 \end{bmatrix}.$$