Linear algebra and series

Assignment 4

(Matrix representation (contd) and eigenvalues)

August-November Semester

2024

Department of Mathematics, Indian Institute of Technology Palakkad 6th October, 2024 (Friday)

Instructors. Dr Gopikrishnan Chirappurathu Remesan, Dr Balakumar G P, and Dr Jaikrishnan Janardhanan

1 Tutorial questions

1. Let *V* be a two dimensional vector space over the field *F*, and *B* be an ordered basis for *V*. If *T* is a linear operator on *V* and

$$[T]_B = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

then prove that $T^2 - (a+d)T + (ad-bc)I = 0$.

2. Let *T* be a linear operator on \mathbb{R}^3 , the matrix of which in the standard basis is

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}.$$

Find a basis for the range of *T* and a basis for the nullspace of *T*.

- 3. Find the eigenvalues of the rotation matrix $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. For what values of θ are the eigenvalues real?
- 4. Let $A \in \mathbb{F}^{n \times n}$ and λ be an eigenvalue of A. Suppose $f(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$ is a polynomial with coefficients from \mathbb{F} . Show that if $Av = \lambda v$ for some $v \in \mathbb{F}^n$ then

$$(a_n A^n + a_{n-1} A^{n-1} + \dots + a_0 I)v = f(\lambda)v.$$

- 5. If each row sum of a matrix A is 1, show that 1 is an eigenvalue of A.
- 6. For a linear operator $T: V \to V$, a linear subspace U of V is said to be an invariant subspace (or explicitly *T*-invariant), if $T(U) \subset U$. Must every linear operator have a proper invariant subspace? Next, suppose T has an eigenvalue λ ; verify that the eigenspace E_{λ} comprising eigenvectors associated to the eigenvalue λ is *T*-invariant.
- 7. Let *V* be vector space of all functions from \mathbb{R} into \mathbb{R} which are continuous. Let *T* be the linear operator on *V* defined by

$$(Tf)(x) = \int_0^x f(t) \,\mathrm{d}t$$

Prove that *T* has no eigenvalues.

2 Exercises

- 1. Given that $T : \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation with T((2,3)) = (2,2,1) and T((3,4)) = (-1,0,2), write down the matrix representation of T.
- 2. Find the eigenvalue(s) and eigenvectors, if any, of the operator T(x, y) = (2x + 4y, 2y) on \mathbb{R}^2 .
- 3. Find the eigenvalues and bases for the corresponding eigenspaces of the following matrices.

(a)	$\begin{vmatrix} 1 \\ -2 \end{vmatrix}$	$\begin{bmatrix} -2\\1 \end{bmatrix}$	
(b)	$\begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix}$	$-1 \\ 2 \\ -1$	$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$
(c)	$\begin{bmatrix} -4\\ 3\\ -3 \end{bmatrix}$	$-4 \\ 4 \\ -2$	$\begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$

- 4. Find the eigenvalues and eigenvectors of the differential operator $\frac{d}{dx}$ on the polynomial space $P^k([0,1])$.
- 5. Prove that A is a singular matrix if and only if 0 is an eigenvalue.
- 6. Prove that the eigenvalues of an upper triangular (or lower triangular) matrix are its diagonal entries.
- 7. Define linear transformations *A* and *B* on \mathbb{R}^2 by

$$A(x, y) = (x + y, y)$$
 and $B(x, y) = (x + y, x - y)$

Find all eigenvalues of A and B and their eigenspaces.

- 8. Let A be a $n \times n$ matrix such that $A^k = 0$ for some $k \ge 1$. What are all the eigenvalues of A?
- 9. Let $T: V \to V$ be a linear transformation on a vector space V. If v is an eigenvector of T with eigenvalue λ , show that T(v) is also an eigenvector of T with the same eigenvalue.