Linear algebra and series

Assignment 3

(Rank, Linear transformations, Kernel, Image)

August–November Semester 2024

Department of Mathematics, Indian Institute of Technology Palakkad *18 September, 2024 (Wednesday)*

Instructors. Dr Gopikrishnan Chirappurathu Remesan, Dr Balakumar G P, and Dr Jaikrishnan Janardhanan

1 Tutorial questions

- 1. Show that the solution set to the linear system $Ax = 0$ is a vector space of dimension $n \text{rank}(A)$ for any $m \times n$ matrix A over $\mathbb R$ or $\mathbb C$.
- 2. Let A and B be $n \times n$ matrices. Show that for any $n \times n$ matrix X

$$
rank \begin{pmatrix} A & X \\ 0 & B \end{pmatrix} \geq rank(A) + rank(B).
$$

Discuss the cases where $X = 0$ and $X = I$ respectively.

3. Find the dimensions of $\text{Im}(A)$ and $\text{Ker}(A)$, and find their bases for the linear transformation A on \mathbb{R}^3 by

$$
A(x, y, z) = (x - 2z, y + z, 0)^{\mathrm{T}}.
$$

4. **(Integral transformation).** Define the indefinite integral map $T_{int}: P^k(\mathbb{R}) \to P^{k+1}(\mathbb{R})$ by

$$
T_{int}(f) = \int f(x) dx
$$
 for all $f \in P^k(\mathbb{R})$.

Compute the kernel and range of T_{diff} and verify the rank–nullity theorem. Compute the matrix representation of T_{int} with respect to the natural bases of $P^k(\mathbb{R})$ and $P^{k+1}(\mathbb{R})$.

- 5. (**Rotation matrices**.) Suppose that $A \in \mathbb{R}^{2 \times 2}$ rotates the vector $v = (a, b)^T$ by θ radians.
	- (a) Compute the entries of A .
	- (b) Write the linear transformation $T_{\text{rot}} : \mathbb{R}^2 \to \mathbb{R}^2$ that corresponds to A.
	- (c) Let $B_2 = \{(f_{11}, f_{12}), (f_{21}, f_{22})\}$ be an arbitrary basis of \mathbb{R}^2 . Compute the change of basis matrices from $B_1 = \{e_1, e_2\}$ to B_2 and vice versa.
	- (d) Compute the matrix representation of T_{rot} with respect to B_2 .
	- (e) Compute the matrix representaion of T_{rot} when viewed as a map from \mathbb{R}^2 with respect to B_2 to \mathbb{R}^2 with respect to B_1 .
- 6. **(Reflection matrix).** Write the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ that reflects a vector about an axis tilted ϑ radians in the anticlockwise direction. Compute the matrix representation of this linear map.
- 7. Let T_{trans} : $Mat_{2\times 2}(\mathbb{R}) \rightarrow Mat_{2\times 2}(\mathbb{R} \text{ by } T_{trans}(A) = A^{T}$. Show that there does not exists any matrix M such that $MA = T_{trans}(A)$.

2 Exercises

1. Find the rank of the matrix

$$
\begin{pmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 2 & 1 & 0 \end{pmatrix}
$$

using elementary row operations.

- 2. Find the rank and a basis of the row space of each of the following matrices.
	- (a)

- 3. Show that rank of $B^t A^t$ = rank of AB, assuming that the product AB is defined.
- 4. Show that if A is not a square matrix, then rows of A form a linearly dependent set or the columns of A form a linearly dependent set.
- 5. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$
T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, x_2 + 2x_1, -x_1 - 2x_2 + 2x_3).
$$

- (a) Verify that it defines a linear operator.
- (b) Compute the kernel (null-space) of T .
- (c) Compute the rank and nullity of T .
- 6. Let $T: V \to V$ be a linear map. Prove that if $T^2 = T \circ T$ is injective, then T is injective.
- 7. If S, T are linear operators from V into V, show that the composition $S \circ T$ is also a linear operator from V into V .
- 8. Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. It is known that $T((2,1)) = (3,4)$ and $T(1,1) = (-1,2)$. Determine $T((4, 3))$.
- 9. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$
T(x, y, z) = (2x - y + 5z, -4x + 2y - 10z).
$$

Write down a basis for the kernel (null-space) of T . Is T injective?

10. Let $V = \mathcal{P}^n([0,1])$. Compute the rank and nullity of the linear operators T_k given by $T_k(p) = p^{(k)}$ for every polynomial in $\mathcal{P}^n([0,1])$. Here $p^{(k)}$ denotes the k^th derivative of p.

- 11. Compute the rank and nullity of the trace operator from $M_n(\mathbb{R})$ into \mathbb{R} .
- 12. Does there exists a surjective linear transformation from \mathbb{R}^2 to \mathbb{R}^3 ?
- 13. Can a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ map a line to a circle?
- 14. Is the function from $P_2(\mathbb{R})$ to $P_4(\mathbb{R})$ that squares a polynomial a linear transformation? What about the function that multiplies a given polynomial by x^2 ?
- 15. Let V , W be finite-dimensonal vector spaces and let U be a subspace of V . Show that
	- (a) Show that any linear map $T: U \to W$ can be extended to a linear map $\tilde{T}: V \to W$.
	- (b) Assume that dim(W) \geq dim(V). Show that we can find a linear map $T: V \to W$ whose kernel is precisely U .
- 16. by $T(A) = A \cdot C C \cdot A$. Verify that it is a linear operator. What is the kernel of $t \cdot \tau$ where $t \cdot \tau$ is the trace operator?
- 17. Let V be a (finite dimensional) vector space and W be a subspace of V. We say that an operator P on V is idempotent if $P^2 = P \circ P = P$. Show that there exists an idempotent operator P on V such that the range of P is W [range of P is the same as Image of P].
- 18. Let $P: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ given by $P(A) = \frac{A+A^T}{2}$ $\frac{A^{A}}{2}$. Then show that *P* is a linear operator. Compute the rank and nullity of P .
- 19. Using the Rank-Nullity theorem prove that

Column rank of
$$
A = Row
$$
 rank of A

for an $m \times n$ matrix A with entries from \mathbb{F} .

20. Let V and W be two vector spaces over \mathbb{F} . Let

 $L(V, W) = \{T : V \rightarrow W : T \text{ is a linear transformation}\}.$

Show that $L(V, W)$ is a vector space over $\mathbb F$ with the following operations,

$$
(S+T)(v) = S(v) + T(v) \text{ and}
$$

$$
(cT)(v) = cT(v)
$$

for any *S*, $T \in L(V, W)$, $c \in \mathbb{F}$ and $v \in V$.