Linear algebra and series

Assignment 3

(Rank, Linear transformations, Kernel, Image)

August-November Semester

2024

Department of Mathematics, Indian Institute of Technology Palakkad 18 September, 2024 (Wednesday)

Instructors. Dr Gopikrishnan Chirappurathu Remesan, Dr Balakumar G P, and Dr Jaikrishnan Janardhanan

1 Tutorial questions

- 1. Show that the solution set to the linear system $A\mathbf{x} = 0$ is a vector space of dimension $n \operatorname{rank}(A)$ for any $m \times n$ matrix A over \mathbb{R} or \mathbb{C} .
- 2. Let *A* and *B* be $n \times n$ matrices. Show that for any $n \times n$ matrix *X*

$$\operatorname{rank} \begin{pmatrix} A & X \\ 0 & B \end{pmatrix} \ge \operatorname{rank}(A) + \operatorname{rank}(B).$$

Discuss the cases where X = 0 and X = I respectively.

3. Find the dimensions of Im(A) and Ker(A), and find their bases for the linear transformation A on \mathbb{R}^3 by

$$A(x, y, z) = (x - 2z, y + z, 0)^{\mathrm{T}}.$$

4. (Integral transformation). Define the indefinite integral map $T_{int} : P^k(\mathbb{R}) \to P^{k+1}(\mathbb{R})$ by

$$T_{int}(f) = \int f(x) dx$$
 for all $f \in P^k(\mathbb{R})$.

Compute the kernel and range of T_{diff} and verify the rank–nullity theorem. Compute the matrix representation of T_{int} with respect to the natural bases of $P^k(\mathbb{R})$ and $P^{k+1}(\mathbb{R})$.

- 5. (Rotation matrices.) Suppose that $A \in \mathbb{R}^{2 \times 2}$ rotates the vector $\mathbf{v} = (a, b)^{\mathrm{T}}$ by θ radians.
 - (a) Compute the entries of *A*.
 - (b) Write the linear transformation $T_{rot} : \mathbb{R}^2 \to \mathbb{R}^2$ that corresponds to A.
 - (c) Let $B_2 = \{(f_{11}, f_{12}), (f_{21}, f_{22})\}$ be an arbitrary basis of \mathbb{R}^2 . Compute the change of basis matrices from $B_1 = \{e_1, e_2\}$ to B_2 and vice versa.
 - (d) Compute the matrix representation of T_{rot} with respect to B_2 .
 - (e) Compute the matrix representation of T_{rot} when viewed as a map from \mathbb{R}^2 with respect to B_2 to \mathbb{R}^2 with respect to B_1 .
- 6. (**Reflection matrix**). Write the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^2$ that reflects a vector about an axis tilted ϑ radians in the anticlockwise direction. Compute the matrix representation of this linear map.
- 7. Let T_{trans} : $Mat_{2\times 2}(\mathbb{R}) \to Mat_{2\times 2}(\mathbb{R} \text{ by } T_{\text{trans}}(A) = A^{T}$. Show that there does not exists any matrix M such that $MA = T_{\text{trans}}(A)$.

2 Exercises

1. Find the rank of the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 2 & 1 & 0 \end{pmatrix}$$

using elementary row operations.

- 2. Find the rank and a basis of the row space of each of the following matrices.
 - (a)

(b)

19	0	1 0	
0	0	1 0	
1	1	1 1	1
0	0	$ 1 0 \\ 1 0 \\ 1 1 \\ 1 0 $	
-			-
r ~	2	-	~1
5	-2	T	- 0
-2	0	-4	1
1	-4	-11	2
0	1	$ \begin{array}{r} 1 \\ -4 \\ -11 \\ 2 \end{array} $	0
L			- 1

- 3. Show that rank of $B^t A^t$ = rank of AB, assuming that the product AB is defined.
- 4. Show that if *A* is not a square matrix, then rows of *A* form a linearly dependent set or the columns of *A* form a linearly dependent set.
- 5. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, x_2 + 2x_1, -x_1 - 2x_2 + 2x_3).$$

- (a) Verify that it defines a linear operator.
- (b) Compute the kernel (null-space) of *T*.
- (c) Compute the rank and nullity of *T*.
- 6. Let $T: V \to V$ be a linear map. Prove that if $T^2 = T \circ T$ is injective, then T is injective.
- 7. If *S*, *T* are linear operators from *V* into *V*, show that the composition $S \circ T$ is also a linear operator from *V* into *V*.
- 8. Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. It is known that T((2, 1)) = (3, 4) and T(1, 1) = (-1, 2). Determine T((4, 3)).
- 9. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by

$$T(x, y, z) = (2x - y + 5z, -4x + 2y - 10z).$$

Write down a basis for the kernel (null-space) of T. Is T injective?

10. Let $V = \mathcal{P}^n([0,1])$. Compute the rank and nullity of the linear operators T_k given by $T_k(p) = p^{(k)}$ for every polynomial in $\mathcal{P}^n([0,1])$. Here $p^{(k)}$ denotes the $k^t h$ derivative of p.

- 11. Compute the rank and nullity of the trace operator from $M_n(\mathbb{R})$ into \mathbb{R} .
- 12. Does there exists a surjective linear transformation from \mathbb{R}^2 to \mathbb{R}^3 ?
- 13. Can a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ map a line to a circle?
- 14. Is the function from $P_2(\mathbb{R})$ to $P_4(\mathbb{R})$ that squares a polynomial a linear transformation? What about the function that multiplies a given polynomial by x^2 ?
- 15. Let V, W be finite-dimensional vector spaces and let U be a subspace of V. Show that
 - (a) Show that any linear map $T: U \to W$ can be extended to a linear map $\widetilde{T}: V \to W$.
 - (b) Assume that $\dim(W) \ge \dim(V)$. Show that we can find a linear map $T: V \to W$ whose kernel is precisely U.
- 16. by $T(A) = A \cdot C C \cdot A$. Verify that it is a linear operator. What is the kernel of $tr \circ T$ where tr is the trace operator?
- 17. Let *V* be a (finite dimensional) vector space and *W* be a subspace of *V*. We say that an operator *P* on *V* is idempotent if $P^2 = P \circ P = P$. Show that there exists an idempotent operator *P* on *V* such that the range of *P* is *W* [range of *P* is the same as Image of *P*].
- 18. Let $P: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ given by $P(A) = \frac{A+A^t}{2}$. Then show that P is a linear operator. Compute the rank and nullity of P.
- 19. Using the Rank-Nullity theorem prove that

Column rank of
$$A = Row$$
 rank of A

for an $m \times n$ matrix A with entries from \mathbb{F} .

20. Let V and W be two vector spaces over \mathbb{F} . Let

 $L(V, W) = \{T : V \to W : T \text{ is a linear transformation}\}.$

Show that L(V, W) is a vector space over \mathbb{F} with the following operations,

$$(S+T)(v) = S(v) + T(v) \quad and$$

$$(cT)(v) = cT(v)$$

for any $S, T \in L(V, W)$, $c \in \mathbb{F}$ and $v \in V$.