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1 Tutorial questions
1. Let 𝑉 be a vector space over R. If 𝑥1, 𝑥2, · · · , 𝑥𝑛 ∈ 𝑉 be such that

∑
𝑗 𝑎 𝑗𝑥 𝑗 = 0 some scalars 𝑎1, . . . , 𝑎𝑛

with 𝑎1𝑎𝑛 ≠ 0, show that span(𝑥1, . . . , 𝑥𝑛−1) = span(𝑥2, . . . , 𝑥𝑛).

2. Find three vectors in R𝑛 which are linearly dependent, and are such that any two of them are linearly
independent.

3. Let 𝑊 = {(𝑥1, 𝑥2, · · · , 𝑥𝑛) ∈ R𝑛 :
𝑛∑
𝑖=1

𝑥𝑖 = 0}. Exhibit a basis and compute its dimension.

4. Let𝑉1 and𝑉2 be subspaces of a vector space of finite dimension such that dim(𝑉1+𝑉2) = dim(𝑉1∩𝑉2)+1.
Show that 𝑉1 ⊆ 𝑉2 or 𝑉2 ⊆ 𝑉1.

5. Show that an invertible matrix need not have an LU factorization/decomposition, by demonstrating this

(i.e., proving the impossibility) for the matrix
[
0 1
1 1

]
.

6. Let 𝐴, 𝐵 be the matrices

𝐴 =


1 2
3 4
5 6


and

𝐵 =

[
1 2 3
4 5 6

]
.

Verify the following 𝐿𝑈-factorizations

𝐴 =


1 0
3 1
5 2


[
1 2
0 −2

]
.

and
𝐵 =

[
1 0
4 1

] [
1 2 3
0 −3 −6

]
.

Now, use these factorizations to show that 𝐵𝑥 = 𝑦 has a solution for every 𝑦 ∈ C2 whereas 𝐴𝑥 = 𝑦 ∈ C3
has a solution if and only if 𝑦1 − 2𝑦2 + 𝑦3 = 0; verify that (1,−2, 1) lies in the null-space of 𝐴.

(Remark: 𝐿𝑈 and 𝑃𝐿𝑈 decompositions are useful when we are required to solve multiple systems 𝐴𝑥 = 𝑏
where the ’coefficient’ matrix 𝐴 remains the same but the RHS vector 𝑏 keeps changing).
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7. Let 𝑉 be the set of all real numbers of the form 𝑎 + 𝑏
√
2 + 𝑐

√
3, where 𝑎, 𝑏, 𝑐 are rational numbers. Show

that 𝑉 is a vector space over the rational number field Q. Exhibit a basis for 𝑉 .

8. Find the dimension and a basis for the four fundamental subspaces for

𝐴 =


1 2 0 1
0 1 1 0
1 2 0 1

 and 𝑈 =


1 2 0 1
0 1 1 0
0 0 0 0


9. Let 𝐴 and 𝐵 be two complex matrices. Recall that 𝑅(𝐴) is the range (column) space of 𝐴 and 𝑅(𝐴T) is the

row space of 𝐴. Show that 𝑅(𝐴) ⊆ 𝑅(𝐵) ⇔ 𝐴 = 𝐵𝐶 for some matrix𝐶 and 𝑅(𝐴T) ⊆ 𝑅(𝐵T) ⇔ 𝐴 = 𝑅𝐵
for some matrix B.

10. Let 𝐴 and 𝐵 be 𝑚 × 𝑛 matrices. Show that 𝑅(𝐴 + 𝐵) ⊆ 𝑅(𝐴) + 𝑅(𝐵).

2 Exercises
1. Verify that the set of all symmetric 𝑛×𝑛 matrices, i.e. the set of matrices 𝐴 = (𝑎𝑖 𝑗)𝑛×𝑛 such that 𝑎𝑖 𝑗 = 𝑎 𝑗𝑖

for all 𝑖, 𝑗 = 1, 2, · · · , 𝑛 is a linear space.

2. Let𝑉 be the vector space of all 2×2 matrices over the field 𝐹. Prove that𝑉 has dimension 4 by exhibiting
a basis of 𝑉 which has four elements.

3. Let 𝑉 be the vector space of all 2 × 2 matrices over the field 𝐹. Let 𝑊1 be the set of matrices of the form(
𝑥 −𝑥
𝑦 𝑧

)
and let 𝑊2 be the set of matrices of the form (

𝑎 𝑏
−𝑎 𝑐

)
.

(a) Prove that 𝑊1 and 𝑊2 are subspaces of 𝑉 .
(b) Find the dimensions of 𝑊1, 𝑊2, 𝑊1 +𝑊2, and 𝑊1 ∩𝑊2.

4. Determine the dimension of the vector space spanned by

{(1,−3, 8,−3), (−2, 4, 6, 0), (0, 1, 5, 7)}.

5. Let 𝐴 be a matrix of order 3×3 with real entries. Suppose 𝐴 commutes with every matrix 𝐵 of order 3×3
with real entries. (This means 𝐴𝐵 = 𝐵𝐴.) Show that 𝐴 must be a scalar matrix, that is, a scalar multiple
of the identity matrix.

6. Find 3 different bases for Mat𝑛×𝑛 (R), the space of 𝑛 × 𝑛 matrices over the field R.

7. Find a basis {𝐴, 𝐵, 𝐶, 𝐷} of Mat2×2(R) such that 𝐴2 = 𝐴, 𝐵2 = 𝐵,𝐶2 = 𝐶, 𝐷2 = 𝐷.

8. Find the span of

(a) 1 + 𝑥2, 𝑥 + 𝑥2 and 1 + 𝑥 + 𝑥2 in 𝑃2(R).
(b) 1 − 𝑥2 , 𝑥 − 𝑥2 and 2 − 𝑥 − 𝑥2 in 𝑊 = {𝑝 ∈ 𝑃2(R) : sum of the coefficients is 0}.
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9. Determine whether each of the following form a linearly independent set of vectors:

(a) {(1, 2, 6), (−1, 3, 4), (−1,−4, 2)} in R3

(b) {(1, 0, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2)} in R4

(c) {𝑢 + 𝑣, 𝑣 + 𝑤, 𝑤 + 𝑢} given that {𝑢, 𝑣, 𝑤} is a linearly independent set of vectors in R2023

10. In each of the following, determine whether the given set forms a basis:

(a) {(5, 3, 7), (1,−3, 6), (0, 3, 1)} in R3.
(b) {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} in R4.
(c) {(1, 0,−1), (1, 2, 1), (0,−3, 2)} in R3.

11. Find a basis and then the dimension for the following:

(a) Subspace 𝑉1 of R3 described by the equation 2𝑥 + 3𝑦 − 4𝑧 = 0,
(b) Subspace of R4 given by 𝑉2 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) : 𝑎 = 𝑐 = 𝑒, 𝑏 + 𝑑 = 0}

12. Show that the following vectors form a base for the spaceR𝑛. (1, 1, 1, 1 · · · , 1), (0, 1, 0, 0, · · · , 0); (0, 1, 1, 0, · · · , 0),
(0, 1, 1, 1, 0, · · · , 0), · · · , (0, 1, 1, 1, · · · , 1)

13. Find 3 different bases for 𝑀𝑛 (R).

14. Compute the dimension of the following subspaces of P𝑛 ([0, 1]).

(a) {𝑝 ∈ P𝑛 ([0, 1]) : 𝑝(0) = 0}
(b) {𝑝 ∈ P𝑛 ([0, 1]) : 𝑝(0) = 0 and 𝑝(1) = 0}

15. Exhibit a basis for the subspace consisting of all (a) upper triangular matrices, (b) diagonal matrices, (c)
symmetric matrices in 𝑀𝑛 (R).

16. If {𝑢1, 𝑢2, · · · , 𝑢𝑛} is a basis for R𝑛, does it follow that {𝑢1 − 𝑢2, 𝑢2 − 𝑢3, · · · , 𝑢𝑛−1 − 𝑢𝑛, 𝑢𝑛 − 𝑢1} forms
a basis of R𝑛?

17. If 𝑉1, 𝑉2 are two vector spaces then show that 𝑊 = {(𝑣1, 𝑣2) : 𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2} is a vector space.
Show that 𝑑𝑖𝑚(𝑊) = 𝑑𝑖𝑚(𝑉1) + 𝑑𝑖𝑚(𝑉2).

18. Find a basis of the vector space C over R.

19. Find a basis {𝐴, 𝐵, 𝐶, 𝐷} of 𝑀2(R) such that 𝐴2 = 𝐴, 𝐵2 = 𝐵,𝐶2 = 𝐶, 𝐷2 = 𝐷.

20. Why is there no matrix whose row space and nullspace both contain (1, 1, 1)?

21. If the matrix 𝐴 has the same four fundamental subspaces as 𝐵, does 𝐴 = 𝑐𝐵?
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