Linear algebra and series

Assignment 2

(Vector spaces, subspaces, span, linear dependency, basis, LU decomposition, fundamental spaces)

August-November Semester

2024

Department of Mathematics, Indian Institute of Technology Palakkad 03 September, 2024 (Tuesday)

Instructors. Dr Gopikrishnan Chirappurathu Remesan, Dr Balakumar G P, and Dr Jaikrishnan Janardhanan

1 Tutorial questions

- 1. Let V be a vector space over \mathbb{R} . If $x_1, x_2, \dots, x_n \in V$ be such that $\sum_j a_j x_j = 0$ some scalars a_1, \dots, a_n with $a_1 a_n \neq 0$, show that $\operatorname{span}(x_1, \dots, x_{n-1}) = \operatorname{span}(x_2, \dots, x_n)$.
- 2. Find three vectors in \mathbb{R}^n which are linearly dependent, and are such that any two of them are linearly independent.

3. Let
$$W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$$
. Exhibit a basis and compute its dimension.

- 4. Let V_1 and V_2 be subspaces of a vector space of finite dimension such that $\dim(V_1+V_2) = \dim(V_1 \cap V_2)+1$. Show that $V_1 \subseteq V_2$ or $V_2 \subseteq V_1$.
- 5. Show that an invertible matrix need not have an LU factorization/decomposition, by demonstrating this (i.e., proving the impossibility) for the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.
- 6. Let A, B be the matrices

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

[1 o]

and

Verify the following LU-factorizations

$$A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}.$$

and

$$B = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}.$$

Now, use these factorizations to show that Bx = y has a solution for every $y \in \mathbb{C}^2$ whereas $Ax = y \in \mathbb{C}^3$ has a solution if and only if $y_1 - 2y_2 + y_3 = 0$; verify that (1, -2, 1) lies in the null-space of A.

(<u>Remark</u>: *LU* and *PLU* decompositions are useful when we are required to solve multiple systems Ax = b where the 'coefficient' matrix A remains the same but the RHS vector b keeps changing).

- 7. Let *V* be the set of all real numbers of the form $a + b\sqrt{2} + c\sqrt{3}$, where *a*, *b*, *c* are rational numbers. Show that *V* is a vector space over the rational number field \mathbb{Q} . Exhibit a basis for *V*.
- 8. Find the dimension and a basis for the four fundamental subspaces for

	1	2	0	1			1	2	0	1]	
A =	0	1	1	0	and	U =	0	1	1	0	
	1	2	0	1			0	0	0	0	

- 9. Let *A* and *B* be two complex matrices. Recall that R(A) is the range (column) space of *A* and $R(A^{T})$ is the row space of *A*. Show that $R(A) \subseteq R(B) \Leftrightarrow A = BC$ for some matrix *C* and $R(A^{T}) \subseteq R(B^{T}) \Leftrightarrow A = RB$ for some matrix **B**.
- 10. Let *A* and *B* be $m \times n$ matrices. Show that $R(A + B) \subseteq R(A) + R(B)$.

2 Exercises

- 1. Verify that the set of all symmetric $n \times n$ matrices, i.e. the set of matrices $A = (a_{ij})_{n \times n}$ such that $a_{ij} = a_{ji}$ for all $i, j = 1, 2, \dots, n$ is a linear space.
- 2. Let *V* be the vector space of all 2×2 matrices over the field *F*. Prove that *V* has dimension 4 by exhibiting a basis of *V* which has four elements.
- 3. Let V be the vector space of all 2×2 matrices over the field F. Let W_1 be the set of matrices of the form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$$

and let W_2 be the set of matrices of the form

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix}.$$

- (a) Prove that W_1 and W_2 are subspaces of V.
- (b) Find the dimensions of W_1 , W_2 , $W_1 + W_2$, and $W_1 \cap W_2$.
- 4. Determine the dimension of the vector space spanned by

$$\{(1, -3, 8, -3), (-2, 4, 6, 0), (0, 1, 5, 7)\}.$$

- 5. Let *A* be a matrix of order 3×3 with real entries. Suppose *A* commutes with every matrix *B* of order 3×3 with real entries. (This means AB = BA.) Show that *A* must be a scalar matrix, that is, a scalar multiple of the identity matrix.
- 6. Find 3 different bases for $Mat_{n \times n}(\mathbb{R})$, the space of $n \times n$ matrices over the field \mathbb{R} .
- 7. Find a basis $\{A, B, C, D\}$ of $Mat_{2\times 2}(\mathbb{R})$ such that $A^2 = A, B^2 = B, C^2 = C, D^2 = D$.
- 8. Find the span of
 - (a) $1 + x^2$, $x + x^2$ and $1 + x + x^2$ in $P^2(\mathbb{R})$.
 - (b) $1 x^2$, $x x^2$ and $2 x x^2$ in $W = \{p \in P^2(\mathbb{R}) : \text{ sum of the coefficients is } 0\}$.

- 9. Determine whether each of the following form a linearly independent set of vectors:
 - (a) $\{(1, 2, 6), (-1, 3, 4), (-1, -4, 2)\}$ in \mathbb{R}^3
 - (b) $\{(1, 0, 2, 1), (1, 3, 2, 1), (4, 1, 2, 2)\}$ in \mathbb{R}^4
 - (c) $\{u + v, v + w, w + u\}$ given that $\{u, v, w\}$ is a linearly independent set of vectors in \mathbb{R}^{2023}
- 10. In each of the following, determine whether the given set forms a basis:
 - (a) $\{(5,3,7), (1,-3,6), (0,3,1)\}$ in \mathbb{R}^3 .
 - (b) $\{(1,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1)\}$ in \mathbb{R}^4 .
 - (c) {(1, 0, -1), (1, 2, 1), (0, -3, 2)} in \mathbb{R}^3 .
- 11. Find a basis and then the dimension for the following:
 - (a) Subspace V_1 of \mathbb{R}^3 described by the equation 2x + 3y 4z = 0,
 - (b) Subspace of \mathbb{R}^4 given by $V_2 = \{(a, b, c, d, e) : a = c = e, b + d = 0\}$
- 12. Show that the following vectors form a base for the space \mathbb{R}^n . $(1, 1, 1, 1, \dots, 1)$, $(0, 1, 0, 0, \dots, 0)$; $(0, 1, 1, 0, \dots, 0)$, $(0, 1, 1, 1, 0, \dots, 0)$, \dots , $(0, 1, 1, 1, \dots, 1)$
- 13. Find 3 different bases for $M_n(\mathbb{R})$.
- 14. Compute the dimension of the following subspaces of $\mathcal{P}^n([0,1])$.
 - (a) $\{p \in \mathcal{P}^n([0,1]) : p(0) = 0\}$
 - (b) $\{p \in \mathcal{P}^n([0,1]) : p(0) = 0 \text{ and } p(1) = 0\}$
- 15. Exhibit a basis for the subspace consisting of all (a) upper triangular matrices, (b) diagonal matrices, (c) symmetric matrices in $M_n(\mathbb{R})$.
- 16. If $\{u_1, u_2, \dots, u_n\}$ is a basis for \mathbb{R}^n , does it follow that $\{u_1 u_2, u_2 u_3, \dots, u_{n-1} u_n, u_n u_1\}$ forms a basis of \mathbb{R}^n ?
- 17. If V_1, V_2 are two vector spaces then show that $W = \{(v_1, v_2) : v_1 \in V_1 \text{ and } v_2 \in V_2\}$ is a vector space. Show that $dim(W) = dim(V_1) + dim(V_2)$.
- 18. Find a basis of the vector space \mathbb{C} over \mathbb{R} .
- 19. Find a basis $\{A, B, C, D\}$ of $M_2(\mathbb{R})$ such that $A^2 = A, B^2 = B, C^2 = C, D^2 = D$.
- 20. Why is there no matrix whose row space and nullspace both contain (1, 1, 1)?
- 21. If the matrix A has the same four fundamental subspaces as B, does A = cB?