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Abstract
In the biphasic models presented in this thesis, a tumour is a continuous agglomeration

of a cell phase and an interstitial fluid phase. The model variables are cell volume fraction,
cell velocity (plus pressure in 2D/3D), and nutrient concentration governed by a hyperbolic,
elliptic, and parabolic equation, respectively. The time–dependent tumour boundary is
specified by an ordinary differential equation.

The first part of this dissertation deals with biphasic tumour growth models in 1D.
Expensive re-meshing enforced by the time-dependent boundary, lack of uniform bounds
on variables, and nonlinearity are a few challenges offered by the biphasic model. Also,
the current framework does not facilitate theoretical results, such as the existence of a
solution. To address these difficulties, two variant models are presented in which the model
equations are defined on an extended domain. In the first (extended model) and second
variants (threshold model), the time-dependent boundary is recovered as a curve in the
time-space domain at which the cell volume fraction becomes zero and less than a small
threshold value, respectively. The source terms in the threshold model are also slightly
modified to enable a convergence analysis. A numerical scheme based on a combination
of finite element and finite volume methods is employed to obtain the discrete solutions.
Under a suitable Courant–Friedrichs–Lewy condition the discrete scheme for the threshold
model is shown to converge to a weak solution defined in an appropriate sense.

The second part of the thesis focusses on tumour growth problems in 2D and 3D.
A biphasic model is introduced with a well–posed cell velocity equation, the absence of
which was a significant drawback in the predecessor models. The notion of the threshold
model and a discrete scheme that employs a search method to locate the tumour boundary
is extended to the higher dimensions. However, the computational efficiency achieved in
2D is more significant than that in 1D, as the re–meshing was considerably expensive
in 2D. Several numerical experiments that illustrate the numerical scheme’s versatility,
such as capturing the evolution of tumours with varying topologies are conducted. The
lack of a uniform bounded variation estimate for the finite volume solutions of nonlinear
multidimensional scalar conservation laws was a challenge in proving the existence of a
weak solution to 2D tumour growth models. In this thesis, this goal is achieved and the
result is employed to establish the existence of a weak solution to a 2D tumour growth
model.

In the third part of the thesis, a modelling framework for tumour growth in an exter-
nal polymeric medium is derived. The nonlinear elasticity theory and biphasic approach
are used to model the polymeric medium and tumour, respectively. Several numerical sim-
ulations are conducted, and they are in good agreement with the previous results in the
literature.

A long sustained gap between tumour growth modelling and numerical analysis is
partially bridged in this dissertation. The attention on computational efficiency facilitates
statistical estimation of model parameters, and the findings could be used in real–life med-
ical applications in future.
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Chapter 1

Introduction

In this chapter, we provide a description of mathematical modelling of different occur-
rences of tumour development, such as free suspension, in vitro, and in vivo growth. The
motivation of designing and mathematically analysing numerical schemes for such mod-
els is discussed. A survey of existing literature, derivation of a standard one–dimensional
model [1], standard notations and results, organisation of the thesis, and chapter–wise
descriptions are also included.
Biological terminology
In the sequel, in vivo refers to a process or experiment that takes place inside a living
organism. In vitro refers to a process or experiment conducted in a controlled laboratory
environment such as a tumour culture in a petri dish. Vasculature means a system of blood
vessels. The adjectives vascular and avascular indicate the presence and absence of blood
supply, respectively.

1.1 Motivation
In the earliest stage, a tumour consists of a group of proliferating cells without any well–
developed vascular network. External nutrients that diffuse into the tumour tissue act as
the nutritional supply that triggers cell mitosis. This is called the avascular stage. When
the tumour attains a threshold size and is no longer able to sustain its constituent cells
by a diffusing nutrient alone, it develops a complex vascular system interlaced with that
of the host, which marks the onset of malignancy. Therefore, it is crucial to understand
the features of the avascular stage and the role of various internal and external factors to
inhibit tumour proliferation. Moreover, a better understanding of the avascular stage acts
as a precursor to the modelling of complex vascular and metastasic stages.

In this thesis, the tumour is modelled as a biphasic mixture of a cell and a fluid phase,
that represent the tumour cells and the extracellular fluid, respectively, see Figure 1.1. The
fluid is consumed by the tumour cells to grow and proliferate. The dead cells are assimilated
into the fluid phase. Since the material constitution of the cell and fluid phases are the same,
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both of the phases are assumed to have identical densities. An external nutrient diffuses
through the tumour, which controls the rate of cell proliferation and cell death. The mass
and momentum balance applied to the solid and fluid phases yield a coupled system of
governing equations. Generic variables associated with tumour models considered in this
thesis are the cell volume fraction, cell velocity, fluid pressure, and nutrient concentration.
The normal velocity of the tumour boundary is the same as the normal velocity of the
tumour cells, which characterises the time–dependent tumour boundary.
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n|Γ(t)

τ|Γ(t)

u · n|Γ(t) = Γ′(t) · n|Γ(t)

Figure 1.1: Biphasic mixture of tumour cells and fluid. Here, ΓΓΓ(t) is the time–dependent
boundary of the tumour at time t, nnn|ΓΓΓ(t) and τττ |ΓΓΓ(t) are unit normal and tangent vectors to
ΓΓΓ(t), respectively. The cell velocity is denoted by uuu.

Though the modelling of tumour spheroids was initiated in the 1970s, the theoretical
literature available is scarce. Mathematical modelling of tumour growth as a discipline
became well established by 2010. However, the well–posedness results and numerical anal-
ysis are still lagging behind. One of the main challenges in obtaining theoretical results is
the presence of a time–dependent boundary associated with the problem, which also man-
ifests as an unknown variable. The lack of information of regularity of the time–dependent
domain significantly reduces the applicability of many standard theorems and analytical
results. In fact, characterisation of the time–dependent boundary that enables a proof of
the existence of solutions to the model itself is an involved task. The next challenge is
the heterogeneous nature of the partial differential equations (PDE) based system that
models tumour growth. Usually, the model is governed by a system of hyperbolic, elliptic,
parabolic PDEs and a time–dependent ordinary differential equation (ODE). The model
variables that are represented by these PDEs are cell volume fraction, cell velocity (and
fluid pressure when d≥ 2), and nutrient concentration, respectively. For each class of these
equations, one employs different mathematical techniques to derive analytical properties.
When they appear as a coupled system, a fundamental difficulty is to adapt individual
units of analytical tools appropriately to deal with the system.

The heterogeneous nature of models and the time-dependent boundary also offer
challenges in designing numerical schemes and the subsequent analysis. A numerical scheme
that respects the local conservation of mass such as finite volume method is employed
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to discretise the hyperbolic equation. The choice of a finite element methods for cell
velocity, pressure, and nutrient concentration has to be stable and not computationally
expensive, as the scheme needs to be run over multiple time steps. Also, such a scheme
should provide easy access to the velocity vectors needed to compute the boundary fluxes
associated with the finite volume scheme. In general, the highest nutrient concentration
that can be achieved will be set as unity in most dimensionless models. Therefore, the
discrete nutrient concentration obtained from the finite element method should also be
bounded by unity and preserve positivity.

Another difficulty associated with the time–dependent boundary is the remeshing
associated with the evolving spatial domain. Constructing a proper unstructured mesh
with triangles that satisfies properties like shape regularity is computationally intense and
should be avoided if possible.

The fundamental theme of this thesis to address the modelling, numerical, and an-
alytical aspects of avascular tumour growth, and the construction of a robust framework.
The major goals are summarised below:

• Develop mathematical models for tumours growing in various conditions such as
in vitro, in vivo, in an external polymeric medium. A combination of multiphase
mixture theory and linear and nonlinear elasticity theory is employed to devise these
models.

• Develop numerical methods with mathematical justifications to obtain approximate
solutions of different tumour growth models. A combination of finite element and
finite volume methods is used to construct the discrete schemes.

• Establish the existence of a solution to the model and prove convergence of the
numerical schemes.

1.2 Review of literature
We classify the literature survey into two subsections. In Subsection 1.2.1, a review of
works associated with multiphase modelling of avascular and vascular tumour growths is
provided. A review of the state of the art of numerical approximations of tumour growth
models is also provided. In Subsection 1.2.2, a survey of literature that study analytical
properties such as well–posedness and regularity properties of tumour growth models (not
necessarily biphasic) is conducted. Figure 1.2 illustrates key references used in this thesis
and their relationship with thesis chapters.

1.2.1 Multiphase modelling in tumour growth
H. P. Greenspan [2] proposed an early model of avascular tumour growth. In this article,
it is assumed that a diffusing nutrient solely controls the growth of a multicellular tumour
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spheroid. The concentration of the nutrient is governed by a diffusion equation with a
source term that depends on the concentration of the nutrient, the size of the tumour, and
time. The time–dependent boundary follows an ordinary differential equation derived from
balancing the rate of volume change of the tumour spheroid and the net production rate
of tumour cells. However, this model considers only a single phase of tumour cells. Many
other important aspects of tumour growth such as mechanical interactions between tumour
cells and the influence of extra cellular fluid were not accounted in this model.

The earliest biphasic model for avascular growth was proposed by J. P. Ward and
J. R. King [3] to the best of our knowledge. In this model, an avascular tumour is a
continuous mixture of proliferating and dead cells with distinct volume fractions. Here, the
tumour is assumed to contain no other components or vacuous space, which implies that
the volume fractions of dead and proliferating cells add up to unity. The mass balance
of dead and proliferating cells is employed to derive hyperbolic conservation laws with
net production rates of respective phases as source terms. An external diffusing nutrient
controls the production rate of tumour cells, which follows a reaction–diffusion equation.
The cell velocity follows a Darcy equation. The velocity of tumour radius is set as the
velocity of the tumour cells located at the tumour boundary. The Ward and King’s model
provides a robust framework to construct more complex models that account for viscous
effects of tumour cells, mechanical drag between tumour cells and extra cellular fluid, and
development of vasculature.

Mathematical modelling achieved further momentum after a series of articles were
published by H. M. Byrne et al. [1, 4–7] during the period 2000–2003. A biphasic model
with proliferating and dead cells as the constituent phases that depicts the evolution of a
vascular tumour was published by C. J. W. Breward in [5]. This one–dimensional model
also consists of a hyperbolic conservation law that governs the volume fraction of tumour
cells, a Darcy equation that governs cell velocity, and a reaction–diffusion equation that
governs the nutrient concentration. The thickness of a blood vessel located at the tumour
periphery acts as a time–dependent boundary function.

The framework for the avascular tumour growth model [1] was laid out by the works
[5], [3], and [8]. In [1], the avascular tumour is modelled as a one spatial dimensional
mixture of a cell and fluid phase. The cell phase constituted by tumour cells is assumed to
be a viscous phase, whilst the fluid phase is assumed to be inviscid. The mass balance leads
to hyperbolic conservation laws in the volume fractions of the cell and fluid phases. The
velocity of the tumour cells is modelled by a steady state linear elasticity equation. The
fluid phase follows a Darcy equation. The nutrient is governed by a steady state diffusion
equation. Also, in this model the velocity of the tumour boundary is set as the velocity of
tumour cells located at the tumour boundary. A higher dimensional version of this model
is presented in [7] without any numerical simulations.

Except [7], the articles reviewed above intrinsically assumed that the tumour grows
radially symmetrically, which enables reduction of the system to one spatial dimension.
However, this is not a valid assumption in many practical cases. Some aspects of asymmetric
tumour growth is explored by H. M. Byrne et al. in [4], where the authors consider radially
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symmetric solutions of avascular tumour growth and then attempt to introduce asymmetry
as perturbations involving spherical harmonics. However, a complete asymmetric study
without reducing dimensionality was not conducted. The detailed description of multiphase
mixture theory and tumour growth is provided in [6]. In [9], S. Astanin et al. review
multiphase models of tumour growth with detailing of mathematical derivations. Though
the work presented in these articles accelerated the progress of avascular and vascular
tumour growth modelling, the well–posedness was not investigated. Moreover, the stability
and convergence analysis of the numerical methods used to solve these models were not
studied.

A framework of multiphase fluid flow models with a time–dependent boundary is
proposed by J. M. Osborne et al. in [10]. Here, the authors solve the hyperbolic conservation
law using a discrete version of the characteristic equation, cell velocity–pressure system
using a Taylor–Hood finite element method, and nutrient concentration by a Lagrange P1
finite element method. Then, this discrete scheme is applied in [10] to the biphasic model
proposed by H. M. Byrne et al. However, the stability and convergence of the numerical
scheme are not discussed in this work. This framework is used by M. E. Hubbard et
al. [11] to numerically solve a vascular tumour growth model. Here, the authors employ an
upwind finite volume method to discretise the hyperbolic conservation law. The analytical
properties of the numerical scheme is not discussed in this work as well.

J. A. MacKenzie et al. [12] conducted the stability and convergence analysis of a
finite difference scheme for a reaction–diffusion problem on a one–dimensional domain with
a time–dependent boundary.

In fact, scientific literature that explicitly study the convergence analysis of numerical
schemes for multiphase flow models with time–dependent boundary are rare. An aim of
this thesis is to bridge this gap and develop a strategy to numerically analyse heterogeneous
models with a time–dependent boundary.

1.2.2 Existence results
In this subsection, the literature pertaining to mathematical analysis of tumour growth
models from 2003 to 2020 is reviewed. However, there could be missing references which
are not directly related to the work in this thesis. Frameworks other than multiphase
mixture theory employed to model tumour growth are also briefly mentioned.
Elliptic–Hyperbolic–Parabolic models
In 2003, B. Bazaliy et al. [13] considered a tumour growth model that consists of a coupled
system of elliptic and parabolic equations. The nutrient concentration is modelled as a
parabolic equation and the pressure exerted by the proliferating cells is modelled as an
elliptic equation. The moving boundary is transformed to a fixed domain using the Hanzawa
transformation. The existence of a unique solution to this problem is established under
strong regularity assumptions that the nutrient concentration belong to H5(Ω(0)), where
Ω(0) is the initial domain of sufficient regularity. S. Cui et al. [14] considered a tumour
growth model driven by nutrient supply, which follows a steady state elliptic equation.
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The proliferating cells, quiescent cells, and dead cells follow hyperbolic equations with
appropriate source terms. The authors proved global and local existence of solutions by
assuming that the initial data is continuously differentiable. A free boundary problem in
Rd, d≥ 1, is considered by A. Friedman in 2004 [15]. Here, a hyperbolic conservation law
is used to model cell volume fraction and a Darcy equation to model the cell velocity. The
normal velocity of tumour boundary is set as normal velocity of the tumour cells present
in the boundary. The existence of global spherically symmetric solutions is also proved.
Asymptotic estimates for the tumour radius is derived in a sequel article by X. Chen et al.
[16]. Y. Tao et al. [17] studied a radially symmetric tumour growth model that accounts for
the effect of a therapeutic drug in 2004. The authors assume that the tumour consists of
drug, partially drug resistant tumour cells, drug sensitive tumour cells, and intratumoural
blood vessels. The dimensionless model is elliptic–hyperbolic, wherein the drug follows
a steady state elliptic equation and cells follow a hyperbolic equation. Local and global
existence of solutions is proved under the assumption that the initial data has C 1 regularity.
Phase field and Cahn–Hilliard models
In 2015, P. Colli [18] studied a phase field system of tumour growth, wherein the volume
fraction of the tumour cells and healthy cells are modelled using Cahn–Hilliard type equa-
tions. The nutrient concentration follows a convection–diffusion equation. The equations
are defined in a bounded connected domain and sufficient smoothness is assumed on the
boundary. The existence and uniqueness of a weak solution at each finite time is estab-
lished. The volume fraction and nutrient concentrations are proved to be H2(Ω) in space,
where Ω is the domain of tumour growth. Another Cahn–Hilliard based model was studied
by H. Garcke and K. F. Lam [19] in 2016, in which the existence of a global weak solu-
tion of a tumour growth model that consists of tumour cells, healthy cells, and nutrient
supply is established. The volume fractions of the tumour and healthy cells are modelled
using a Cahn–Hilliard type system. The tumour velocity follows a Darcy equation. A
convection–diffusion equation governs the nutrient concentration. The existence of weak
solutions in two and three dimensions is established by a Galerkin type approach. The
authors have assumed that domain of tumour growth Ω⊂ Rd, d ∈ {2,3}, is bounded with
a C 3–regular boundary. The Cahn–Hilliard formulation aids to obtain an L2(0,T ;H3(Ω))
regularity on volume fraction. M. Dai et al. [20] also studied a Cahn–Hilliard based model
for tumour growth. In this model, the velocity–pressure system follows Darcy kinetics
and nutrient concentration follows steady–state reaction–diffusion equation. The existence
of weak solution for each finite time is proved using a combination of compactness tech-
niques and fixed point arguments. The tumour cell volume fraction is shown to be of
C 0(0,T ;H1(Ω))∩L2(0,T ;W 2,6(Ω)) regularity.
Porous media model
A model based on diffusion on porous media is developed by I. C. Kim et al [21] in 2016.
The cell proliferation rate is a function of the pressure within the tumour. With the
assumption that the initial data is in L1(Rd), d ≥ 1, the authors prove the existence of a
unique solution by employing viscosity approach. Moreover, the existence of a weak solution
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to the limit problem is also established in a bounded domain by assuming H1–regularity
for the boundary data in time and space.

Optimal control models
In 2017, A. Belmiloudi [22] constructed a model based on optimal control framework that
describes the distribution of a drug administered in a brain tumour. Here, the brain
tumour consists of normal and cancerous cells. The author employed a set of reaction–
diffusion equations to model the interactions between the tumour cells, normal cells, and
the drug. The advection velocity is assumed to be in the space L∞(0,T ;W 1,∞(Ω)), where
T is the final time and Ω is a bounded domain of sufficient boundary regularity. Under
the assumption that the initial data is in the space L∞(Ω)∩H1(Ω) and positive, the
existence and uniqueness of positive solutions to the reaction–diffusion system in the space
H2,1(Q)∩L∞(Q), where Q = (0,T )×Ω are proved. The existence of an optimal control,
that minimizes a cost functional, which measures the concentration of the tumour cells and
the difference between observed data from medical imaging such as magnetic resonance
imaging (MRI) and the corresponding variables in the reaction–diffusion system, is also
proved in this article. S. I. Oke et al. [23] studied a breast cancer model with the effect
of chemotherapy. In this model, the amount of drug to be administered is presented as an
optimal control problem, wherein the tumour cell concentration is governed by a system
of ordinary differential equations. The existence of an optimal control is proved with a
stability estimate on the state variables. A wide range of sensitivity analysis experiments
are also carried out to understand the dependence of parameters on solutions.

Integro–differential equation models
In 2019, T. Hillen et al. [24] developed a tumour growth model by assuming that the
tumour consists of two types of cells: cancer stem cells and tumour cells. A coupled system
of integro–differential equations is used to simulate the dynamics of the cancer stem cells
and tumour cells. A comprehensive review of this article is carried out by I. Padilla et
al. [25]. L. Maddalena [26] has shown existence of solutions (see [25, Theorem 2.3] or [26,
Theorem 1]) for this system with homogeneous Neumann boundary conditions and initial
data with H2(Ω) regularity, where Ω is a bounded domain of sufficient boundary regularity.
This result can also be proved for an initial data with L2(Ω) regularity (see [25, Theorem
2.4]) at the price of reduced regularity of the solutions. The existence of solutions for
a one–dimensional version of the model with homogeneous Dirichlet boundary conditions
was proved by A. Fasano et al. [27]. A similar model that studies the role of cancer stem
cells in the relapse of tumour growth is proposed by I. Borsi et al. [28]. The cancer cell
and cancer stem cell density are modelled by a system of integro–differential equations.
With the assumption that the initial conditions are globally continuous up to boundary,
the authors have established the existence of a unique global solution.

Nonlinear models
More recently, the existence of a radially symmetric solution to a nonlinear vascular tumour
growth model was established by H. Song et al. [31]. The model consists of a nonlinear
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system of stationary Poisson equations that depict the evolution of nutrient concentration
and pressure inside the tumour tissue. The tumour cell velocity and pressure are related
by a Darcy equation. The authors also consider a linearised problem around the radially
symmetric solution and establish estimates of the solution in C k(Ω) spaces.

One of the characteristic features of the aforementioned works is the assumption
of high regularity on initial and boundary conditions and on time–dependent boundary.
Though the scientific literature on this direction aids to advance the analytical study,
the applicability of such works to practical problems is limited. For instance, in general
the natural regularity that can be imposed on initial volume fraction of tumour cells is
L∞(Ω(0)), where Ω(0) is the initial tumour domain. Similarly, it not very realistic to
impose high regularity on the time–dependent boundary. In this thesis, we impose the
natural regularity on the data. Since the time–dependent boundary is an unknown in the
framework employed in this thesis, only minimal regularity is assumed on it.

1.3 Organisation and contributions of the thesis
The models and numerical schemes employed in each chapter with main contributions are
presented in Table 1.1. Figure 1.3 classifies the models in each chapter into free suspension,
in vitro, and in vivo. The free suspension model is an idealistic description of tumour growth
that serves as a precursor to both in vivo and in vitro cases.
Chapter 2
Chapter 2 deals a different variant of the Breward–Byrne–Lewis (BBL) model (1.21) termed
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as extended model, its numerical approximation, and simulations. The spatial domain,
(0, ℓ(t)), evolves with respect to time. To avoid the computational cost incurred from
remeshing, an equivalent model is presented, wherein the cell volume fraction equation is
defined on a fixed domain (0, ℓm) and the boundary point ℓ(t) is characterised as ℓ(t) :=
min{y : ∀y ≤ x≤ ℓm, α(t,x) = 0}. To obtain the numerical solutions, a fixed discretisation
of the domain (0, ℓm) is employed. The cell volume fraction equation is approximated
using an upwind and monotone upwind for scalar conservation laws (MUSCL) scheme.
The discrete tumour boundary is defined as ℓ(tn) := min{y : ∀y ≤ x≤ ℓm, αh(tn,x)≤ αthr}
at a time step tn, where αh(tn, ·) is the discrete volume fraction at time tn and αthr is a small
positive number. The elliptic (cell velocity) and parabolic equation (nutrient concentration)
are solved using Lagrange P1 finite element method and a mass lumped P1 finite element
method, respectively. The threshold value, αthr, is crucial in improving the accuracy of
ℓ(tn) and obtaining many theoretical results on the model. The numerical results are
tested against test cases with a priori known exact solutions.

The extended model removes the explicit tracing of the time–dependent boundary.
Moreover, the numerical scheme in Chapter 2 does not increase the model complexity
contrary to standard methods such as level set. Since no domain transformation mapping
are used [1], the fundamental nature of the PDEs are preserved. Computational cost is
reduced by eliminating remeshing altogether.

in vitro

BBL, extended,
and threshold

models
Chapters 1–4

(1D)

Nutrient
unlimited model

(NUM)
Chapter 5 (2D)

Free suspension
growth

in vivo

Nutrient limited
model (NLM)

Chapter 5 (2D)

Stress dependent
growth

Chapter 7 (1D)

ductal carcinoma
model

Chapter 6 (2D)

Model type

Figure 1.3: Model types in each chapter

Chapter 3
In Chapter 3, another variant of the BBL model called the threshold model is intro-
duced. Though the extended model facilitates a faster numerical scheme without the
need of remeshing, the lack of uniform bounds of cell volume fraction and coercivity of
the cell velocity inside the computational domain DT := (0,T )× (0, ℓm) hinders a pos-
sible convergence analysis. In the threshold model, the tumour boundary is defined as
ℓ̃(t) = min{x : α(t,x)≤ αthr on (x,ℓm)}, the source term of the volume fraction is modified
as (α−αthr)f(α,c), and force term H (α) is modified as (α−αthr)+/(1−α)2. The modified
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In Table 1.1, the abbreviations Ch., FS, and Dim. stand for Chapter, free suspension, and
spatial dimension of the model.

Ch. Type Model
(Dim.)

Model variables and
numerical schemes

Key contributions

1 FS
BBL

model
(1D)

1. FDM for all variables
2. FDM for cell volume

fraction, FEM for cell
velocity and nutrient
concentration

Introduction and use of fi-
nite element method to dis-
cretise the BBL model

2 FS
Extended

model
(1D)

FVM for cell volume
fraction, FEM for cell
velocity and nutrient

concentration

BBL model without the
need for explicit tracking of
the time–dependent bound-
ary

3 FS
Threshold

model
(1D)

FVM for cell volume
fraction, FEM for cell
velocity and nutrient

concentration

Source terms are modified
using the threshold value

4 FS
Threshold

model
(1D)

FVM for cell volume
fraction, FEM for cell
velocity and nutrient

concentration

Convergence analysis of nu-
merical scheme in Chapter 3
and existence of a threshold
solution

5

in
vitro,

in
vivo

Threshold
model
(2D)

FVM for cell volume
fraction, FEM for cell
velocity and nutrient

concentration

Developing a well–posed
2D moving boundary model
without the explicit track-
ing of the boundary, design
of a numerical scheme for
asymmetric tumour growth

6 in
vivo

Ductal
carcinoma

model (2D)

Semi discrete scheme:
FVM for cell volume

fraction, weak solutions of
velocity–pressure system

and nutrient equation

Strong BV estimates in 2D,
existence of a weak solution
to the tumour model

7 in
vitro

BBL model
on an

external
polymeric
medium

(1D)

FVM for cell volume
fraction, FEM for cell
velocity and nutrient

concentration, FDM for
tumour radius

Modelling of polymeric
medium using nonlinear
elasticity, introduction
of biphasic approach in
stress–dependent growth
models

Table 1.1: Summary of models and numerical schemes used in each chapter and key con-
tributions.
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equations are justified for theoretical reasons as explained in Section 3.4.2. Also, sufficient
emphasis has been provided to keep the model as realistic as possible. A weak solution
for the threshold model, termed as threshold solution, is presented. A discrete scheme is
presented for the threshold model, which is based on the scheme introduced in Chapter 2
for the extended model.

The main contribution of Chapter 3 is the design of the threshold model, wherein
the modified model coefficients facilitates a possible convergence analysis. Construction
of a discrete scheme that respects the physical properties of the model variables is also a
novelty. Additionally, the notion of a variational solution that nicely patch up hyperbolic,
elliptic, and parabolic equations associated with the threshold model is introduced, which
to the best of our knowledge is first for tumour growth models.
Chapter 4
In Chapter 4, existence of a threshold solution is established by a Galerkin type approach.
It is shown that the discrete solutions obtained from Chapter 3 are uniformly bounded in
appropriate normed spaces, which aids to extract weakly convergent subsequences. The
limit of any convergent subsequence is established to be a threshold solution. The main
challenge in Chapter 4 is to prove bounded variation regularity for discrete versions of α and
∂xu, and boundedness of discrete versions of u and ∂xu. The BV regularity is crucial since
the term (α−αthr)f(α,c) in the hyperbolic equation is nonlinear and weak–⋆ convergence
is not sufficient to ensure convergence of the numerical scheme. The boundedness and BV
results on u and ∂xu is needed to ensure the BV regularity of α. A discrete Aubin–Simon
theorem is used to establish the strong L2 convergence of c, which is also necessary to
account for the nonlinearity in (α−αthr)f(α,c) in the hyperbolic equation.

The convergence analysis of numerical solutions for a tumour growth model that
accounts for cell volume fraction, cell velocity, and the nutrient concentration is the main
contribution of Chapter 4. To the best of our knowledge, this is the first convergence
analysis of its kind. The proof of existence of a threshold solution has not been presented
in the previous literature. Chapter 4 provides a generic framework to conduct theoretical
and numerical analysis of multiphase tumour growth models.
Chapter 5
Chapter 5 deals with a two and three spatial dimensional versions of the extended model.
The main drawback of the model [7] considered in this chapter is that the cell velocity
equation is not well–posed due to lack of necessary boundary conditions. In Chapter 5, the
well–posedness of the velocity–pressure system at each time is established by supplementing
the system with a homogeneous tangential boundary condition. Similar to Chapter 2, we
show that the model is equivalent to a variant wherein the hyperbolic equation is defined on
a fixed domain and the tumour boundary is obtained as the interface, where the cell volume
fraction has a jump from a positive value to zero. The model is discretised using upwind
finite volume for the hyperbolic equation, Taylor–Hood finite element method for velocity–
pressure system, and mass-lumped P1 finite element method for nutrient concentration. The
spatial triangulation needs to be unstructured to avoid grid orientation effects associated
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with finite volume methods. Chapter 5 also describes numerical difficulties associated with
structured triangulation and how to choose an unstructured triangulation.

The development of a mathematically well–defined model without the presumption
of symmetric tumour growth and design of a numerical scheme that eliminates expensive
remeshing in 2D and seamlessly simulates tumours (in vivo and in vitro) with irregular
shapes and changing topological structures are the main contributions of Chapter 5. The
equivalence of the original model and a variant that removes the time–dependent boundary
from the system altogether, is proved. While doing so the complexity of the model is not
increased. Such a model and discrete scheme is novel in literature.
Chapter 6
In Chapter 6, a strong bounded variation estimate for finite volume solutions of nonlin-
ear hyperbolic conservation laws of the form ∂tα+ F(t,xxx,α) = 0 and α(0, ·) = α0 in Ω on
nonuniform Cartesian grids in Rd, d≥ 2, is derived. The lack of such a result was a major
difficulty in obtaining a convergence result in higher dimensional models of tumour growth.
A major change from previously available literature is the relaxation of the classical as-
sumption that divxxxFFF = 0. The existence of weak solution to a two–dimensional tumour
growth problem is proved by employing the strong bounded variation estimate on the cell
volume fraction (concentration). The model is adapted from [29] and depicts the evolution
of tumour growth in a two–dimensional rectangular domain. A hyperbolic conservation
law, viscous stokes system, and Poisson equation that respectively governs the cell volume
fraction, cell velocity–pressure system, and nutrient concentration constitute the model.

The strong BV estimate on finite volume schemes for nonlinear scalar conservation
laws in 2D and 3D over nonuniform Cartesian grids is the main contribution of Chapter 6.
The velocity vector has non-zero divergence in the proofs, which is an improvement over
the existing literature with zero divergence. Chapter 6 complements the state of the art
of theoretical analysis of tumour growth models by establishing the existence of a weak
solution to a 2D tumour growth problem.
Chapter 7
In in vitro tumour growth experiments, cells are cultured in a gelatinous medium, referred
to as hydrogel, that mimics the properties of tissues. An expanding tumour compresses
the hydrogel against the boundaries of the culture dish. The stress generated in the hydro-
gel by this compression hinders the tumour growth. In Chapter 7, a mathematical model
that describes how mechanical deformations in the hydrogel affect tumour growth is pre-
sented. The tumour is modelled as a two-phase mixture of a viscous tumour cell phase
and an isotropic inviscid interstitial fluid phase. The hydrogel is modelled as a nonlinear
elastic material. For simplicity and as an initial analysis, we restrict the attention to a one–
dimensional Cartesian geometry. The model variables are cell volume fraction, cell velocity,
nutrient concentration, and tumour radius. These variables are respectively governed by a
hyperbolic conservation law, a generalised Stokes equation, a parabolic diffusion equation,
and an ordinary differential equation. Continuity of stress at the tumour–hydrogel inter-
face manifests as a Neumann boundary condition for the generalised Stokes equation. A
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combination of a finite volume method for the hyperbolic conservation law, Lagrange P1
finite element method for the generalised Stokes equation and mass lumped finite element
method for the diffusion equation is used to construct numerical solutions. The qualita-
tive behaviour of tumour growth depends on the hydrogel compressibility. It is observed
that the tumour either evolves to a stable equilibrium size or it is compressed and eventu-
ally eliminated. The numerical simulations are consistent with previous findings from the
literature, such as limited growth in an external medium.

Chapter 7 contributes to the mathematical modelling of tumour growth by coupling
the multiphase tumour growth driven by an external limiting nutrient with the kinetics of a
nonlinear elastic external medium. The novel model aids investigating into different aspects
of tumour growth in an external medium such as influence of hydrogel compressibility and
stabilisation of tumour radius. Moreover, it paves a basic groundwork for the construction
of higher dimensional analogues.

Chapter 8 and appendices
Chapter 8 presents the summary and conclusions of the thesis. The prospective extensions
of different variants of tumour growth models are discussed. A summary of future plans
on numerical analysis of tumour growth models in one and higher spatial dimensions is
also presented. Appendix A contains a brief derivation of the monotone upwind schemes
for scalar conservation laws and a proof of strong bounded variation estimate for finite
volume schemes in 3D. A brief derivation of the biphasic tumour growth model in higher
dimensions is presented Appendix B.

1.4 Preliminaries
Identities, definitions, and results used in this thesis are listed here. Subsection 1.4.1
contains definitions of function spaces, inner products, and norms. The identities and
inequalities are provided in Subsection 1.4.2. Key lemmas and theorems are listed in
Subsection 1.4.3.

1.4.1 Definitions
The definitions of Lebesgue and Sobolev spaces used in this dissertation are standard; see
H. Brezis [96] and L. C. Evans [97] for further details. Let Ω⊂Rd be an open and bounded
in Rd (d ≥ 1) with boundary ∂Ω, where d is the dimension. The regularity of ∂Ω varies
in each chapter and it is explicitly mentioned where ever required. The set {Ω(t)}0≤t≤T

denotes a family of open and bounded time–dependent domains in Rd (d≥ 1); the boundary
of Ω(t) is denoted by ∂Ω(t).

The Euclidean norm on Rd is denoted by ∥ • ∥d. The Lebesgue measure in Rd is
denoted by µd and the measure of measurable set A⊂ Rd is written as µd(A) =: meas(A).
Let α = (α1, · · · ,αd) be a multi–index in Nd and its length is defined as |α| = ∑d

i= |αi|.
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Define the Sobolev space Wm,p(Ω), where m≥ 0 and 1≤ p <∞ as

Wm,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω), |α| ≤m}

and norm ∥f∥W m,p(Ω) as

∥f∥W m,p(Ω) := ∥f∥m,p,Ω :=

 ∑
|α|≤m

∥∂αf∥pLp(Ω)

1/p

.

For p=∞, define

∥f∥W m,∞(Ω) := max
|α|≤m

||∂αf ||L∞(Ω).

The Hilbert space Wm,2(Ω) is denoted by Hm(Ω). For any k ≥ 0, C k(Ω) denotes k–times
continuously differentiable functions up to the boundary ∂Ω. The class of all smooth
functions is denoted by C ∞(Ω) and those have a compact support by C ∞

c (Ω). The closure
of C ∞

c (Ω) in Wm,p(Ω) is denoted by Wm,p
0 (Ω).

The product spaces are defined asWWWm,p(Ω) := Πd
i=1W

m,p(Ω) andHHHm(Ω) := Πd
i=1H

m(Ω).
For uuu= (u1, . . . ,ud) ∈WWWm,p(Ω), d ∈ {1,2}, define the norm

∥uuu∥m,p,Ω :=
d∑

i=1

∑
|βββ|≤m

∥∂βββui∥Lp(Ω),

where βββ ∈ Nd is a multi–index. Locally regular Sobolev spaces are defined as

Xloc(Ω) := {v ∈ L2(Ω) : v|ω ∈ X(ω) ∀ω ⊂⊂ Ω},

where X =Wm,p or X =WWWm,p. The space C 1
c (Ω;Rd) is collection of smooth and compactly

supported functions from Ω to Rd. The bounded variation seminorm of a function f ∈
L1(Ω), where Ω⊂ Rd is defined by

|f |BV (Ω) := sup
{�

Ω
fdiv(φφφ)dxxx : φφφ ∈ C 1

c (Ω;Rd), ∥φφφ∥L∞(Ω) ≤ 1
}
.

The space of real valued functions on Ω with bounded variation is denoted by BV (Ω).

1.4.2 Identities and inequalities
The algebraic identities are presented here.

I. Grouping identities. If a,b,c,d ∈ R, then the following identities hold:

ab− cd= (a+ c)(b−d)
2

+ (a− c)(b+d)
2

and (1.1a)

ab− cd= (a− c)b+(b−d)c. (1.1b)
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II. Young’s inequalities. [96, Theorem 4.33] Let a,b ∈ R and p > 1. Then, the
following hold:

|ab| ≤ |a|
p

p
+ |b|

q

q
and |ab| ≤ a2

2ϵ
+ ϵb2

2
∀ϵ > 0.

III. Max–Min identities. Let a ∈ R. Define a+ = max(a,0) and a− = −min(a,0).
Then, the following identities hold:

a= a+−a− and |a|= a+ +a−.

IV. Discrete integration by parts formula. [98, Section D.1.7] For any families
(an)n=0,...,N and (bn)n=0,...,N of real numbers, it holds

N−1∑
n=0

(an+1−an)bn =−
N−1∑
n=0

an+1(bn+1− bn)+aNbN −a0b0. (1.4)

V. Hölder’s inequality. [96, Theorem 4.6] Let 1 ≤ p, q ≤∞ and 1 = 1/p+ 1/q. If
f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω).

VI. Korn’s second inequality. [99, Theorem 3.78]. If Ω ⊂ Rd, where d = 2,3 is a
domain, then there exists a positive constant CK such that, for every vvv ∈H1

d(Ω),

CK ||vvv||1,Ω ≤ ||∇svvv||0,Ω + ||vvv||0,Ω.

VII. Poincaré inequality.[100, Theorem 2.3.4] For all u ∈W 1,p
0 (Ω), it holds

∥u∥Lp(Ω) ≤ Cp∥∇u∥Lp(Ω),

where the constant Cp := diam(Ω) is independent of u.

1.4.3 Key results
The key lemmas and theorems employed in this dissertation are collected here. They are
classified into compactness and convergence results and regularity results.

Compactness and convergence results

I. Helly’s selection theorem. [101, Theorem 4, p. 176]. Let Ω⊂Rd (d≥ 1) be an
open and bounded set with a Lipschitz boundary ∂Ω, and (fn)n∈N be a sequence in
BV (Ω) such that (||fn||BV (Ω), ||fn||L1(Ω))n is uniformly bounded. Then, there exists
a subsequence (fn)n up to re-indexing and a function f ∈BV (Ω) such that as n→∞,
fn→ f in L1(Ω) and almost everywhere in Ω.
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II. Discrete Aubin–Simon theorem. [98, Theorem C.8].
The following Definition is required in this theorem.

Definition 1.1 (Compactly–continuously embedded sequence). [98, Definition C.6].
Let B be a Banach space. The families of Banach spaces {Xh, || · ||Xh

}h and {Yh, || ·
||Yh
}h are such that Yh ⊂Xh ⊂ B. We say that the family {(Xh,Yh)}h is compactly

embedded in B if the following conditions hold.

• Any sequence {uh}h such that uh ∈ Xh and {||uh||Xh
}h uniformly bounded is

relatively compact in B.
• Any sequence {uh}h such that uh ∈ Xh, {||uh||Xh

}h uniformly bounded, {uh}h
converges in B, and ||uh||Yh

→ 0, converges to zero in B.

Statement of the theorem: Let p∈ [1,∞), (Xm,Ym)m∈N be a compactly-continuously
embedded sequence in a Banach space B, and (fm)m∈N be a sequence in Lp(0,T ;B),
where T > 0, and assumptions (a), (b), and (c) are satisfied.

(a) Corresponding to each m ∈ N, there exists an N ∈ N, a partition 0 = t0 < · · ·<
tN = T , and a finite sequence (gn)n=0,··· ,N in Xm such that ∀n ∈ {0, . . . ,N −1}
and almost every t ∈ (tn, tn+1), fm(t) = gn. Then, the discrete derivative δmfm

is defined almost everywhere by δmfm(t) := (gn+1−gn)/(tn+1− tn) on (tn, tn+1)
for all n ∈ {0, . . . ,N −1}.

(b) The sequence (fm)m∈N is bounded in Lp(0,T ;B).
(c) The sequences (||fm||Lp(0,T ;Xm))m and (||δmfm||L1(0,T ;Ym))m are bounded.

Then, (fm)m∈N is relatively compact in Lp(0,T ;B).

III. (a) Weak–strong convergence lemma. [98, Lemma D.8]. If p ∈ [0,∞) and
q := p/(1− p) are conjugate exponents, fn→ f strongly in Lp(X), and gn ⇀ g
weakly in Lq(X), where (X,µ) is a measured space, then

�
X
fngn dµ→

�
X
fgdµ.

(b) Bounded–strong convergence lemma. If fn→ f in L2(X), gn→ g almost
everywhere on X, and ||gn||L∞(X) is uniformly bounded, then fngn converges to
fg in L2(X).

(c) Discrete positivity lemma [32, Theorems 3.1, 3.2]. Let D be an n×n
diagonal matrix with positive entries, A be an n×n matrix with all off–diagonal
entries nonpositive, and In be n×n identity matrix. Then, the operator (In +
kD−1S)−1 is positive for sufficiently small k > 0.
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Regularity results and estimates

I. Internal regularity of Poisson equation. [102, Theorem III.4.2] Let f ∈
L2(Ω) and Ω ⊂ R2 be an open and bounded set. If u ∈ H1(Ω) is a solution of the
Poisson equation −∆u= f , then u ∈H2

loc(Ω). Also, for every bounded and open sets
Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω there exists a constant C (Ω1,Ω2)> 0 independent of u such that
||u||2,2,Ω1 ≤ C ||f ||0,2,Ω2 .

II. Global regularity of Poisson equation. [103, Corollary 8.3.3] Set m≥ 2 and
p ≥ 1. Let Ω be a rectangle and f ∈Wm−2,p(Ω). If u ∈ H1(Ω) is a solution of the
boundary value problem −∆u = f in Ω with (λ− 1)∇u ·nnn+λu = 0 on ∂Ω, where
λ ∈ {0,1}, then u ∈Wm,p(Ω).

III. Internal regularity of Stokes equation. [102, Theorems IV.5.8, IV.6.1] Let
Ω be an open and bounded set and g ∈Hk+1

loc (Ω), k≥ 0. Let (uuu,p)∈HHH1
loc(Ω)×L2

loc(Ω)
be a solution to the compressible Stokes system

−µ
(

∆uuu+ 1
3
∇(div(uuu))

)
+∇p= 0 and div(uuu) = g.

Then, it holds (uuu,p) ∈ HHHk+2,2
loc ×Hk+1

loc (Ω). Also, for every bounded and open sets
Ω1 ⊂Ω2 ⊂Ω2 ⊂Ω there exists a constant C (Ω1,Ω2)> 0 independent of uuu and p such
that ||uuu||k+2,2,Ω1 + ||p||k+1,2,Ω1 ≤ C ||g||k+1,2,Ω2 .

IV. Petree–Tartar lemma. [99, Lemma A.38]. If X, Y, and Z are Banach spaces,
A : X → Y is an injective operator, T : X → Z is a compact operator, and there
exists a positive constant C1 such that C1||x||X ≤ ||Ax||Y + ||Tx||Z , then there exists
a positive constant CP T such that CP T ||x||X ≤ ||Ax||Y .

V. Lax–Milgram Theorem. [97, Section 6.2]. Let H be a Hilbert space and
B :H×H→R be a bilinear map such that |B(u,v)| ≤ α||u||H ||v||H (continuity) and
β||u||2H ≤ B(u,u) (coercivity) for every u,v ∈ H, where α > 0 and β > 0 are fixed
constants. Let f : H → R be bounded linear functional on H. Then there exists a
unique element u ∈H such that B(u,v) = f(v) for every v ∈H.

1.5 A biphasic tumour growth model
The avascular tumour growth model derived by C. J. W. Breward et al. [1] is presented
here. The detailed derivation of the model, simplification, and nondimensionalisation is
discussed. The physical motivations of choosing source terms and constitutive relations
are also presented. This model from [1] and further reproduced in (1.21) is referred to
as Breward–Byrne–Lewis (BBL) model in the sequel. The models considered in this
dissertation are motivated from the BBL model. Therefore, it is crucial to understand how
the BBL model is derived in the first place. Also, a brief prologue on the BBL model aids
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to understand how the adapted models in Chapter 2 and Chapter 3 are different. The
robustness of the numerical schemes designed in this thesis are compared with the finite
difference method based solutions of the BBL model presented in [1]. To make comparisons
easy, the schemes used in [1] are presented and the results are reproduced in this section.

1.5.1 Model derivation
In C. J. W. Breward et al. [1], a tumour is construed as a continuous agglomeration of
two phases. The phase that consists of tumour cells is called the cell phase. The fluid
medium that surrounds the cells is called the fluid phase. The cell phase is assumed to
be viscous owing to surface irregularities, and the fluid phase is assumed to be inviscid.
The tumour cells and fluid medium follow the conservation of mass and momentum. Cells
undergo mitotic division by consuming the extracellular fluid. Dead cells disintegrate and
meld into the fluid phase. The pressures in the two phases are different from each other.
The cell phase receives an additional pressure factor due to cell–cell viscous interactions.
The relative distance between the cells determines the nature of force experienced between
them. Remotely located cells exhibit little interaction. If the cells are within a threshold
distance, the filopodial (locomotive structures associated with cell membrane) action brings
them together, and the force is attractive. When cells exceed their natural close packing
density, the proximity produces repulsive interactions between them. The repulsion drives
cells away and releases the mechanical stress. Oxygen – the representative nutrient – is the
limiting factor in cell growth and division. It is assumed that cells and fluid phases have
the same constant density, which is reasonable considering each phase act as a source and
sink of the other. Therefore, the unknown variables in the conservation laws are volume
fractions of each phase rather than their absolute masses. The inertial effects are neglected
due to low Reynolds number [1, p. 128], so that the momentum conservation laws are in
the steady-state form. The model variables and parameters used in this thesis, meaning,
and dimensions are provided in Table 1.2.

space (x)
0 ℓ0

tim
e

(t
)

0

t

T

Ω(t)

ℓ′(t) = uc(t, ℓ(t)

DT

ℓ(t)

Figure 1.4: Time–space domain DT and time–dependent boundary ℓ(t).
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Notation Meaning Dimension
α cell volume fraction 1
β fluid volume fraction 1
uα cell velocity LT−1

uβ fluid velocity LT−1

qα production rate of tumour cells T−1

qβ production rate of fluid T−1

σα stress in cell phase ML−1T−2

σβ stress fluid phase ML−1T−2

pα pressure in cell phase ML−1T−2

pβ pressure in fluid phase ML−1T−2

Σ pressure in the cell phase due to cell–cell interactions ML−1T−2

fα momentum source term in cell phase ML−2T−2

fβ momentum source term in fluid phase ML−2T−2

c nutrient concentration ML−1T−1

Qc rate of change of nutrient concentration ML−3T−1

µα viscosity of cell phase ML−1T−2

Table 1.2: Notations and dimensions of model variables. Here, M, L, and T are dimensions
of mass, length, and time.

We study the evolution of the avascular tumour growth over the finite time interval
(0,T ). The tumour occupies the domain (0, ℓ(t)) at each finite time t ∈ [0,T ). The tumour
radius is defined by the following ordinary differential equation:

ℓ′(t) = uα(t, ℓ(t)) and ℓ(0) = ℓ0. (1.5)

Define the time–space domain of tumour growth by DT := ∪0<t<T ({t} ×Ω(t)), where
Ω(t) := (0, ℓ(t)) and ℓ(t) is referred to as the tumour radius at time t in the sequel, see Fig-
ure 1.4. The governing equations for volume fractions, velocities, and nutrient concentration
in DT are derived next.

Conservation laws

The conservations laws are derived based on Reynold’s transportation theorem, see Theo-
rem 1.2.

Theorem 1.2 (Reynold’s transportation theorem [104, p. 22]). Let V (t), t≥ 0, be a time–
dependent domain and B(t, ·) : V (t)→R be a scalar quantity associated with a fluid flowing
with velocity u(t, ·) : V (t)→ R. Then, it holds that

d
dt

�
V (t)

B(t,x)dx=
�

V (t)

(
∂B

∂t
+ ∂

∂x
(Bu)

)
dx.
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An application of Theorem 1.2 and (1.5) to the cell volume fraction α(t, ·) : (0, ℓ(t))→ R
yields

T1 := d
dt

� ℓ(t)

0
α(t,x)dx=

� ℓ(t)

0
(∂tα+∂x(αuα)) dx.

It is assumed that there is no inflow or outflow across the boundary points (t,0) and (t, ℓ(t)).
Therefore, the differential T1 is same as the net production rate of the tumour cells, which
is equal to

� ℓ(t)
0 qα dx. As a result, we obtain

� ℓ(t)

0
(∂tα+∂x(αuα)) dx=

� ℓ(t)

0
qc dx,

which translates to the PDE

∂α

∂t
+ ∂

∂x
(αuα) = qα in DT . (1.6a)

Follow similar steps to derive the conservation law for the fluid volume fraction, over DT

∂β

∂t
+ ∂

∂x
(βuβ) = qβ in DT . (1.6b)

The assumption that the tumour contains no voids implies α(x,t) +β(x,t) = 1 for every
(t,x) ∈DT . Since the inertial effects are negligible, the conservation of momentum yields

fα + ∂

∂x
(ασα) = 0 and fβ + ∂

∂x
(βσβ) = 0 in DT . (1.7a)

Here, fα (resp. fβ) is the body force density acting on the cell phase (resp. fluid phase).
The second term ∂x(ασα) (resp. ∂x(βσα)) is the surface stress density acting on cell phase
(resp. fluid phase) represented in divergence form.

Constitutive laws

We provide the constitutive laws that describe the terms qα, qβ, σα, σβ, fα, and fβ. Cell
death is the only internal source that creates fluid volume inside the tumour mass and so
it follows that qα =−qβ. The term qα is defined by

qα := α(1−α) S0c

1+S1c︸ ︷︷ ︸
B(α,c)−birth rate

− S2 +S3c

1+S4c
α︸ ︷︷ ︸

D(α,c)−death rate

. (1.8)

Here, S0, S1, S2, S3, and S4 are positive parameters. In (1.8), the first and second terms
represent the cell birth and death rates, respectively. When α = 0, that is, when no cell is
present or when the nutrient concentration approaches zero, the birth rate becomes zero.
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Denote b(c) = S0c/(1 +S1c) and d(c) = (S2 +S3c)/(1 +S4c). Since b′(c) = S0/(1 +
S1c)2, the birth rate, B(α,c), increases with respect to the nutrient concentration. In
the limiting case, where c approaches infinity, the birth rate becomes α(1−α)S0/S1. The
condition S3/S4 ≤ S2 is imposed, so that the death rate, D(α,c), remains a decreasing
function of the nutrient concentration. If c = 0, then D(α,c) becomes αS2 and when c
approaches infinity, D(α,c) becomes αS3/S4. The variations of b(c) and d(c) are depicted
in Figure 1.5.

0 5 10 15
0

0.5

1

1.5

2

2.5

S0/S1

nutrient concentration

b(
c)

(a) b(c) vs. c, where S0 = 2 and S1 = 1.

0 5 10 15
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S2/S4

nutrient concentration

d
(c
)

(b) d(c) vs. c, where S2 = 2, and S3 = 1,
S4 = 5.

Figure 1.5: Variation of b(c) and d(c). The blue thick lines indicate the variation of b(c)
and d(c), while the red dotted lines show the asymptotes as c approaches infinity.

Stress Tensors

Stresses in the cell and fluid phases are described by

σα =−pα +2µα
∂uα

∂x
, and σβ =−pβ, (1.9a)

wherein pressures in the cell and fluid phases are related by

pα = pβ +γH (α), (1.9b)

H : (0,1)→ R quantifies the cell–cell interactions, and

H (α) := α−αR

(1−α)2 Heav(α−αmin). (1.9c)

Here, the Heaviside step function is defined as Heav(x) := 1 if x ≥ 0 and Heav(x) := 0
otherwise. The quantity αR is the volume fraction of the cells at their natural close packing.
If the cell volume fraction exceeds αR, then the cells experience mechanical stress which
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drives them away from one another. On the other hand, if the cell volume fraction is below
a threshold value αmin, then the cells are sparsely distributed and cell–cell interactions
are negligible. If αR > α > αmin, then the cells experience a nonzero attractive interaction
quantified by H .

The variation of H with respect to α is plotted in Figure 1.6 for αmin = 0.7 and
αR = 0.8.

Figure 1.6: Figure showing the variation of the cell–cell interaction term H (α) (y-axis)
with respect to the cell volume fraction α (x-axis).

Momentum source terms

The relative movement of the cells and fluid phase imparts a Darcy-style drag, which serves
as the source of momentum. The momentum source terms in the cell and fluid phases are

fα = pβ
∂α

∂x
+k1αβ(uβ−uα), and (1.10a)

fβ = pβ
∂β

∂x
−k1αβ(uβ−uα), (1.10b)

where k1 is the drag coefficient which is proportional to the viscosity of fluid phase. Here,
αβ is included as a proportionality constant, since there is no viscous drag in the absence
of either phase. The terms pβ

∂α

∂x
and pβ

∂β

∂x
represent the interfacial pressure in the cell

and fluid phase, respectively.
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Nutrient concentration and consumption rate

The nutrient required for cell growth is obtained through diffusion. An application of
Theorem 1.2 and Fick’s law of diffusion to the nutrient concentration leads to

∂c

∂t
+ ∂(cuα)

∂x
= ∂

∂x

(
η
∂c

∂x

)
−Qc, (1.11)

where η is the diffusivity constant. The nutrient consumption rate by the tumour cells is
governed by the equation Qc = Q0αc

1+Q1c
, where Q0 and Q1 are nonnegative constants.

Initial and boundary conditions

We assume that the tumour growth is symmetric about x= 0, which yields uα = 0 = uβ and
∂c
∂x = 0 at x= 0. Stress is assumed to be continuous and fluid is allowed to pass freely across
the tumour radius. As a result, we obtain the condition; pβ = 0 at x = ℓ(t). Therefore,

the first equation in (1.9a) leads to −σα +2µα
∂uα

∂x
= γH (α). Since σα = 0 at x= ℓ(t), we

use (1.9c) to arrive at
2µα

∂uα

∂x
= γH (α).

Since the nutrient is constant outside the tumour, it holds that c = cout at x = ℓ(t). The
initial data for cell volume fraction and nutrient concentration are α(0,x) = α0(x) and
c(0,x) = c0(x), for every x ∈ (0, ℓ0).

1.5.2 Model simplification
In this section, the model is simplified to four unknowns; cell volume fraction, cell velocity,
nutrient concentration, and tumour radius. Add (1.6a) and (1.6b) and use qα = −qβ and
α(x,t)+β(x,t) = 1 to obtain

∂

∂x

(
uαα+uββ

)
= 0. (1.12)

Integrate both sides of (1.12) to obtain αuα + (1−α)uβ = k, where k is a constant. Since
uα(t,0) = 0 = uβ(t,0), we obtain k = 0 and

uβ =−αuα/(1−α). (1.13)

Add the members of (1.7a) to obtain
∂(ασα +βσβ)

∂x
+fα +fβ = 0. (1.14)

Since σβ =−pβ and σα =−pα +2µα
∂uα

∂x
from (1.9a), (1.14) reads as

∂

∂x

(
α(−pα +2µα

∂uα

∂x
)+β(−pβ)

)
+fα +fβ = 0. (1.15)
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Add (1.10a) and (1.10b) to obtain fα +fβ = 0. Apply this to (1.15) to obtain

∂

∂x
(−αpα)+ ∂

∂x

(
2αµα

∂uα

∂x

)
− ∂

∂x
(βpβ) = 0.

Use (1.9b) and (1.9c) to write

2µα
∂

∂x

(
α
∂uα

∂x

)
= ∂

∂x

(
α(pβ +γH (α))

)
+ ∂

∂x
(βpβ)

=
∂pβ

∂x
+γ

∂

∂x
(αH (α)) . (1.16)

From the second equation in (1.7a), we obtain fβ + ∂

∂x
(βσβ) = 0. This along with the

second equation in (1.9a), (1.10b), and (1.13) yields

∂pβ

∂x
+k1α

(−αuα

1−α
−uα

)
= 0.

Rearrange the terms in the above equation to obtain

uα = 1−α
k1α

∂pβ

∂x
. (1.17)

Substitute (1.17) in (1.16) to obtain

2µα
∂

∂x

(
α
∂uα

∂x

)
= k1

αuα

1−α
+γ

∂

∂x
(αH (α)) . (1.18)

The simplified model is described by (1.6a), (1.18), (1.11), and (1.5) with initial and bound-
ary conditions.

1.5.3 Nondimensionalisation
Scale the independent and dependent variables to obtain corresponding dimensionless quan-
tities denoted with a prime symbol as follows:

t= 1+S1cout
S0cout

t′, x= ℓ0x
′, ℓ= ℓ0ℓ

′, α = α′,

uα = ℓ0S0cout
1+S1cout

u′
α, and c= coutc

′.

The spatial and temporal derivatives of cell volume fraction transforms into

∂α

∂t
= ∂α′

∂t′
S0cout

1+S1cout
and ∂

∂x
(uαα) = S0cout

1+S1cout

∂

∂x′ (u
′
αα

′),
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which yield
∂α

∂t
+ ∂

∂x
(uαα) = S0cout

1+S1cout

(
∂α′

∂t′
+ ∂

∂x′ (u
′
αα

′)
)
. (1.19)

Use c′ = c/cout in (1.19) to arrive at

∂α′

∂t′
+ ∂

∂x′ (u
′
αα

′) = (1+ s1)α′(1−α′)c′

1+ s1c′
− s2 + s3c

′

1+ s4c′
α′, (1.20)

where

s1 = S1cout, s2 = 1+S1cout
S0cout

S2, s3 = S3
1+S1cout

S0
, and s4 = S4cout.

We relabel the variables by removing the prime symbol to avoid notational clumsiness.
Therefore, (1.20) reads as

∂α

∂t
+ ∂

∂x
(uαα) = αf(α,c)

where
f(α,c) = (1+ s1)α(1−α)c/(1+ s1c)−α(s2 + s3c)/(1+ s4c).

Follow similar steps to obtain the dimensionless version of (1.18), which is

kuαα

1−α
−µ ∂

∂x

(
α
∂uα

∂x

)
= ∂

∂x
(αH (α)) ,

where k= k1ℓ
2
0S0cout/(γ(1+S1cout)) and µ= 2µαS0cout/(γ(1+S1cout)). SetQ=Q0

1+S1cout
S0cout

,
Q̂1 =Q1cout, and η := η(ℓ−2

0 )1+S1cout
S0cout

. Then, the dimensionless version of (1.11) is

∂c

∂t
+ ∂(cuα)

∂x
= ∂

∂x

(
η
∂c

∂x

)
− Qαc

1+ Q̂1c
.

In this thesis, we do not consider the effect of the advection term of nutrient ∂x(uαc) to
maintain conformity with the previous works [1, 7]. For notational easiness, we replace uα

by u and µα by µ. The consolidated dimensionless model is

∂α

∂t
+ ∂

∂x
(uα) = αf(α,c), (1.21a)

kuα

1−α
−µ ∂

∂x

(
α
∂u

∂x

)
= − ∂

∂x
(αH (α)) , (1.21b)

∂c

∂t
− ∂

∂x

(
η
∂c

∂x

)
= Qαc

1+ Q̂1c
, and (1.21c)

ℓ′(t) = u(t, ℓ(t)). (1.21d)

The initial conditions are

α(0,x) = α0(x), c(0,x) = c0(x) ∀x ∈ Ω(0), (1.21e)
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ℓ(0) = 1, (1.21f)

and the boundary conditions are

u(t,0) = 0, µ∂u
∂x

(t, ℓ(t)) = H (α(t, ℓ(t))), (1.21g)

∂c

∂x
(t,0) = 0, and c(t, ℓ(t)) = 1 ∀t ∈ (0,T ). (1.21h)

The model (1.21a)–(1.21h) is referred to as Breward–Byrne–Lewis (BBL) model.

1.5.4 Domain fixing transformation
In this subsection, we discuss numerical methods constructed using finite difference, finite
element, and finite volume methods to compute discrete solutions of the BBL model (1.21a)–
(1.21h). In the rest of the this chapter, we consider the steady state version of (1.21c) and
set the diffusivity constant η = 1. The steady–state formulation of (1.21c) is justified since
the time scale for the nutrient diffusion is much faster than the time scale for cell division.

The main challenge in discretising the one–dimensional model (1.21a)–(1.21d) is the
time–dependent boundary governed by (1.21d). A classical way to eliminate the time
dependent boundary is to apply a change of variable to time and space so that (0, ℓ(t)) is
transformed to a fixed interval irrespective of t∈ [0,T ). Transform (t,x) to (τ,ξ) as follows:
for every t≥ 0

ξ := x/ℓ(t) and τ := t. (1.22)

Note that the time dependent domain (0, ℓ(t)) is scaled to (0,1) under (1.22). The trans-
formed model is as follows: for every (τ,ξ) ∈ (0,T )× (0,1), it holds

∂α

∂τ
− ξ
ℓ

dℓ
dτ

∂α

∂ξ
+ 1
ℓ

∂(uα)
∂ξ

= αf(α,c), (1.23a)

ℓ2kαu

1−α
−µ ∂

∂ξ

(
α
∂u

∂ξ

)
= − ℓ ∂

∂ξ
(αH (α)) , (1.23b)

∂2c

∂ξ2 = Qℓ2αc

1+ Q̂1c
. (1.23c)

The transformed initial and boundary conditions are

ℓ= 1, α = α0 c= c0 at τ = 0,

u= 0 = ∂c

∂ξ
at ξ = 0,

µ
∂u

∂ξ
= ℓH (α), c= 1 at ξ = 1, and dℓ

dτ
= u(t,1). (1.23d)
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1.5.5 Finite difference method (FDM) in C. J. W. Breward et
al. [1]

The finite difference discretisation for (1.23a)–(1.23c) is first described in [1]. Let 0 =
ξ0 < · · ·< ξM = 1 and 0 = τ0 < · · ·< τN = T be uniform discretisations of (0,1) and (0,T ),
respectively. Set h= ξi+1− ξi and δ = τn+1− τn. Split the third term in (1.23a) and group
the terms appropriately to obtain

∂α

∂τ
+ ∂α

∂ξ

(
u

ℓ
− dℓ

dτ
ξ

ℓ

)
+ α

ℓ

∂u

∂ξ
= αf(α,c). (1.24)

In (1.24), discretise the temporal derivative using a backward difference approximation
and spatial derivative by an upwind scheme, wherein ∂xα is discretised using backward
difference (resp. forward difference) if Sn

i ≥ 0 (resp. Sn
i < 0). The discretisation of (1.24)

is as follows: set Sn
i := (un

i
ℓ −

ℓn−ℓn−1
δ

ξi
ℓn

).

Case 1 Sn
i ≥ 0:

αn+1
i

(
1
δ

+
(
un

i − ξiu
n
M

ℓδ

)
+
(
un

i+1−un
i−1

2ℓh

)
− (1+ s1)(1−αn+1

i )cni
1+ s1cni

+ s2 + s3c
n
i

1+ s4cni

)

−αn+1
i−1

(
un

i − ξiu
n
M

ℓδ

)
= αn

i

δ
. (1.25)

Case 2 Sn
i < 0:

αn+1
i

(
1
δ
−
(
un

i − ξiu
n
M

ℓδ

)
+
(
un

i+1−un
i−1

2ℓh

)
− (1+ s1)(1−αn+1

i )cni
1+ s1cni

+ s2 + s3c
n
i

1+ s4cni

)

+αn+1
i+1

(
un

i − ξiu
n
M

ℓδ

)
= αn

i

δ
. (1.26)

In the limiting case ξ→ 0, (1.24) becomes

∂α

∂τ
+ α

ℓ

∂u

∂ξ
= (1+ s1)α(1−α)c

1+ s1c
− s2 + s3c

1+ s4c
α, (1.27)

which yields the following discretisation at ξ = 0

αn+1
0

(
1
δ

+
(
un

1 −un
0

ℓh

)
−(1+ s1)(1−αn+1

1 )cn0
1+ s1cn0

+ s2 + s3c
n
0

1+ s4cn0

)
= αn

0
δ
.
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At ξ = 1,
(

u
ℓ −

dℓ
dτ

ξ
ℓ

)
= 0 and (1.24) becomes (1.27). Therefore, the discretisation at ξ = 1

is
αn+1

M

(
1
δ

+
(
un

M −un
M−1

ℓh

)
−(1+ s1)(1−αn+1

M )cnM
1+ s1cnM

+ s2 + s3c
n
M

1+ s4cnM

)
= αn

M

δ
. (1.28)

Write (1.23b) as
ℓ2kαu

1−α
−µα∂

2u

∂ξ2 −µ
∂u

∂ξ

∂α

∂ξ
=−ℓ ∂

∂ξ
(αH (α)) . (1.29)

Discretise (1.29) using central difference method to obtain, for i= 1 to M −1

ℓ2nkα
n+1
i un+1

i

1−αn+1
i

−µαn+1
i

un+1
i+1 −2un+1

i +un+1
i−1

h2 −µ
un+1

i+1 −u
n+1
i−1

2h
αn+1

i+1 −α
n+1
i−1

2h

=− ℓn
2h
(
αn+1

i+1 H (αn+1
i+1 )

)
+ ℓn

2h
(
αn+1

i−1 H (αn+1
i−1 )

)
(1.30)

Since u(t,0) = 0, we impose un+1
0 = 0. From (1.23d), µ∂uc

∂ξ
= ℓH (α) at ξ = 1, which upon

discretisation yields
−µ
h
un+1

M−1 + µ

h
un+1

M = ℓhH (αn+1
M ). (1.31)

Consider (1.23c) in the steady state form and discretise using central difference to obtain,
for 1≤ i≤M −1

cn+1
i+1

1
h2 + cn+1

i

(
− 2
h2 −

Qℓ2nα
n+1
i

1+ Q̂1cni

)
+ cn+1

i−1
1
h2 = 0. (1.32)

Since c = 1 at ξ = 1 from equation (1.23d), we impose cnM = 1. Introduce a ghost point
cn+1

−1 to impose the boundary condition ∂c
∂ξ = 0≈ (cn+1

0 − cn+1
−1 )/h at ξ = 0. Then, set i= 0

in (1.32) to obtain

cn+1
1

1
h2 + cn+1

0

(
− 1
h2 −

Qℓ2nα
n+1
0

1+ Q̂1cn0

)
= 0. (1.33)

Algorithm for finite difference method

Since α0 and c0 is a priori known, at the time step n = 0 it is sufficient to compute
(u0

i ){0≤i≤M}. Use (1.30), (1.31), and u0
0 = 0 to obtain (u0

i ){0≤i≤M}. Algorithm 1.1 provides
the finite difference steps.

Algorithm 1.1 (FDM for BBL model). Input: (α0
i )1≤i≤M and (c0i )1≤i≤M .

Step 1: Compute (u0
i ){0≤i≤M} with (1.30), (1.31), and u0

0 = 0.
Step 2: Computation of the iterates:
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for 0≤ n < N

Step 2.1 Define ℓn+1 = ℓn + δun
M

Step 2.2 Compute (αn+1
i ){1≤i≤M−1} with (1.26)–(1.28)

Step 2.3 Compute (cn+1
i ){0≤i≤M−1} with (1.32), (1.33), and cn+1

M = 1

Step 2.4 Compute (un+1
i ){1≤i≤M} with (1.30), (1.31), and un+1

0 = 0

end for
Output: (αn

i )1≤i≤M , (un
i )1≤i≤M , (cni )1≤i≤M , and (ℓn) for 1≤ n≤N .

Numerical experiments

The constants αR and αmin are fixed at 0.8. The final time T is chosen as T = 225. Set
s1 = 10, s2 = 0.5, s3 = 0.5, s4 = 10, µ= 1, and k= 1. The spatial and temporal discretisation
factors are h= 0.01 and δ= 0.005. The variation of the model variables with respect to time
and space is provided in Figure 1.7. The variation of α(t, ·), u(t, ·), and c(t, ·) at different
time values are plotted against 0 ≤ x ≤ ℓ(t), where t ∈ (0,T ). The attractive interaction

cell volume frac.

(a)

cell velocity

(b)

nutrient con.

(c)

Figure 1.7: Graphs showing the variation of discrete solution obtained from FDM with
respect to x= ξℓ(t) where, 0≤ ξ ≤ 1 for different time values. Each coloured line represent
the variation of model variables at a fixed time as indicated in the legend.

between the cells is assumed to be zero since αR = αmin. From Figure 1.7(a) it is clear
that, as time evolves, the cell volume fraction at the tumour centre approaches zero. This
region is called the central necrotic region. Most of the tumour cells occupy an annular
region around the central necrotic core. In the necrotic core, the nutrient concentration is
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very low and it increases to the maximum value at the tumour boundary. The variation
of tumour radius with respect to time is shown in Figure 1.8. It can be observed that the
the tumour radius shows a linear increase with respect to time, which is a characteristic
feature of early tumour growth with abundant nutritional supply.

Figure 1.8: Variation of the tumour radius with respect to time for FDM.

1.5.6 Modified numerical scheme
The finite difference method, despite its simplicity and relative easiness to perform compu-
tations, offers a few undesirable difficulties. The applicability of finite difference methods
depends very much on the domain in which the partial or ordinary differential equations
are defined. It is challenging to construct a proper finite difference discretisation in do-
mains with boundaries that are nonparallel to the Cartesian axes, and are computationally
intensive in such cases. This shortcoming can be significantly mitigated by employing finite
element methods, which are constructed on the foundation of variational techniques. Finite
element methods do not seek strong regularity requirements on the unknown function and
hence apply to a wide range of problems. Moreover, finite element methods offer a robust
framework to establish many theoretical properties, such as the existence of a solution and
error control.

We describe the discretisation of (1.23b) and (1.23c) using P1–Lagrange elements.
The cell volume fraction equation (1.23a) is discretised using FDM.

Weak formulation
The variational formulations and finite element discretisations of (1.23b) and (1.23c)

are discussed here. Define I = (0,1) and V =
{
v ∈H1(I) : v(0) = 0

}
. Multiply (1.23b) by
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a test function v ∈ V , apply integration by parts, and use (1.23d) to obtain
�

I
a0(ξ)uvdξ+

�
I
a1(ξ)∂u

∂ξ

∂v

∂ξ
dξ =

�
I
a2(ξ)∂v

∂ξ
dξ,

where

a0(ξ) := ℓ2kα

1−α
, a1(ξ) := µα, and a2(ξ) := ℓαH (α). (1.34)

The weak solution is defined as u ∈ V such that (1.34) is satisfied for every v ∈ V . Set
Ii = (ξi−1, ξi), 1 ≤ i ≤M . Define P1(Ii) as the set of all affine polynomials on Ii and the
finite element space Vh ⊂ V by

Vh :=
{
vh : vh ∈ C 0(I),vh|Ii

∈ P1(Ii),1≤ i≤M and vh(0) = 0
}
.

The discrete problem seeks uh ∈ Vh such that, for every vh ∈ Vh it holds.
�

I
a0(ξ)uh vh dξ+

�
I
a1(ξ)∂uh

∂ξ

∂vh

∂ξ
dξ =

�
I
a2(ξ)∂vh

∂ξ
dξ. (1.35)

Define W =
{
v ∈H1(0,1) : v(1) = 0

}
. Multiply (1.23c) by a test function w ∈W , apply

integration by parts and (1.23d) to obtain
�

I

∂c

∂ξ

∂w

∂ξ
dξ =−

�
I

Qαℓ2

1+ Q̂1c
cwdξ. (1.36)

The weak solution to (1.23c) is defined by c ∈ H1(0,1) such that c(1) = 1 and (1.36) is
satisfied for every w ∈W . Define the finite dimensional subspace

Wh :=
{
vh : vh ∈ C 0(I),vh|Ii

∈ P1(Ii), 1≤ i≤M, vh(1) = 0
}
.

The discrete problem seeks ch ∈
{
vh : vh ∈ C 0(I),vh|Ii

∈ P1(Ii), 1≤ i≤M
}

with ch(1) = 1
such that for every wh ∈Wh

�
I

∂ch

∂ξ

∂wh

∂ξ
dξ =

�
I

Qαℓ2

1+ Q̂1ch
chwdξ.

Algorithm for finite element method

The numerical results obtained by using the Algorithm 1.2 is provided in Figure 1.9. The
constants and mesh parameters remain the same as in FDM.

Algorithm 1.2 (Modified scheme for BBL model). Input: (α0
i )1≤i≤M and (c0i )1≤i≤M
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cell volume frac.

(a)

cell velocity

(b)

nutrient con.

(c)

Figure 1.9: Graphs showing the variation of discrete solution obtained from modified nu-
merical scheme with respect to x = ξℓ(t) where, 0 ≤ ξ ≤ 1 for different time values. Each
coloured line represent the variation of model variables at a fixed time as indicated in the
legend.

Step 1: Define the piecewise constant function α0
h : I→ R by, for 1≤ i≤M −1

α0
h|Ii

=
 

Ii

α0(ξ)dξ.

Step 2: Define the velocity function u0
h : I→ R as the solution of (1.35), wherein α is

replaced by α0
h and ℓ by ℓ(0) = 1.

Step 3: Computation of the iterates:

for 1≤ n < N

Step 2.1 Define ℓn = ℓn−1 + δun
h(1).

Step 2.2 Set un
i = un

h(ξi). Use the finite difference scheme (1.25)–(1.28) to
obtain (αn

i ){0≤i≤M}. Define the piecewise constant function αn
h :

I→ R by, for 0≤ i≤M −1, αn
h|Ii

= (αn
i +αn

i+1)/2.

Step 2.3 Define cnh : I→ R as the solution of (1.36), wherein α is replaced
by αn

h, ℓ is replaced by ℓn, and ch in the denominator of the right
hand side of (1.36) is replaced by cn−1

h .
Step 2.4 Define un

h : I→ R as the solution of (1.35), wherein α is replaced
by αn

h and ℓ is replaced by ℓn.
end for
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Output: (αn
i )1≤i≤M , (un

i )1≤i≤M , (cni )1≤i≤M , and (ℓn) for 1≤ n≤N .

It is evident from Figures 1.9 and 1.7 that numerical solutions obtained by employing
finite element method to cell velocity and nutrient tension equations agree well with the
finite difference solutions obtained by C. J. W. Breward et al. in [1].
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Chapter 2

Extended model and numerical
scheme

In this chapter, a biphasic tumour growth model, referred to as extended model, is pre-
sented, by which the time-dependent boundary (2.1f) can be eliminated1. Extended model
describes free suspension growth.

2.1 Introduction
The biphasic fluid flow model of avascular tumour growth was introduced and popularised
by a series of articles published by C. J. W. Breward et al. [1, 5, 33] and H. M. Byrne
et al. [6, 7]. The model is derived by applying conservation of mass and momentum to
different phases in a proliferating tumour. The details of the derivation are provided in
Section 1.5. The net production rate of tumour cells is quantified as the difference between
the birth and death rates, which are controlled by the concentration of an external nutrient.
The prolonged mitosis creates a closely packed tissue of tumour cells. When the natural
close–packing density of tumour cells is exceeded, the resulting mechanical stress drives the
cells apart. The inner stressed cells move towards the tumour periphery resulting in an
expanding tissue.

Literature
Multiphase flow models with and without time-dependent boundaries are used to describe
various physical and biomedical phenomena, see [9] and the references therein. The review
articles by H. B. Stewart and B. Wendroff [34] and D. A. Drew [35] provide a comprehensive
account of mathematical modelling of biphasic flow with different examples. The time–
dependent boundary appears as an intrinsic variable in many multiphase flow models. A

1The results in this chapter have been published as: G. C. Remesan. Numerical solution of the two-
phase tumour growth model with moving boundary. In: Proceedings of the 18th Biennial Computational
Techniques and Applications Conference, CTAC-2018. Ed. by B. Lamichane, T. Tran, and J. Bunder. Vol.
60. ANZIAM J. 2019, pp. C1–C15. https://doi.org/10.21914/anziamj.v60i0.13936.

34

https://doi.org/10.21914/anziamj.v60i0.13936 


review of two–phase flows with a free surface is presented in [36]. Biphasic–free boundary
models of liquid–vapour interactions in heat pumps is described in the works by E. W.
Grald and J. W. MacArthur [37] and [38]. A one dimensional model is studied by L. Yao
and C. J. Zhu [39], wherein the authors consider a viscous two–phase liquid and gas model.
Stefan problems also involve a biphasic approach, where the free boundary often appears
as a separation between the phases [40]; however the governing equations are parabolic.

Motivation
Recall the BBL model from Section 1.5, with DT = ∪0<t<T ({t}× (0, ℓ(t))),

∂α

∂t
+ ∂

∂x
(uα) = αf(α,c) in DT , α(0,x) = α0(x) ∀x ∈ Ω(0), (2.1a)

kuα

1−α
−µ ∂

∂x

(
α
∂u

∂x

)
= − ∂

∂x
(αH (α)) in DT , (2.1b)

u(t,0) = 0, µ∂u
∂x

(t, ℓ(t)) = H (α(t, ℓ(t))) ∀t ∈ (0,T ), (2.1c)

∂c

∂t
− ∂

∂x

(
η
∂c

∂x

)
= Qαc

1+ Q̂1c
in DT , c(0,x) = c0(x) ∀x ∈ Ω(0), (2.1d)

∂c

∂x
(t,0) = 0, c(t, ℓ(t)) = 1 ∀t ∈ (0,T ), (2.1e)

ℓ′(t) = u(t, ℓ(t)), and ℓ(0) = 1. (2.1f)

A drawback associated with the BBL model is the presence of a time–dependent
boundary associated with it. In numerical computations, the time–dependent boundary
necessitates the remeshing of the spatial domain at each time step and thereby increases
the computational cost; though less intense compared to 2D and 3D situations.

The transformation to a fixed domain removes this issue in 1D. A change of variable
x→ ξ := x/ℓ(t), see Subsection 1.5.4, is used to transform the model equations (2.1a)–(2.1f)
into the fixed domain (0,1). Though this is a standard method used to solve many time–
dependent boundary problems [3, 8, 33, 41], the method suffers from a few drawbacks.
Firstly, the change of variable is computable only when the domain geometry is simple
enough, which is practically applicable in the 1D case only. In two and three dimensions,
the domain geometry is often asymmetric and complex, and a feasible transformation may
not be available. Secondly, for the choice of x→ ξ := x/ℓ(t) in the 1D case, the discreti-
sation error is proportional to ℓ(t)∆ξ, where ∆ξ is the spatial discretisation factor. This
indicates that the discretisation error may be undesirably high for larger values of ℓ(t).
An alternative choice is to discretise (0, ℓ(t)) and construct a numerical scheme on (0, ℓ(t))
for each fixed time. However, this remeshing procedure at each fixed time step is com-
putationally expensive and requires projections from one time step to another. Also, the
transformation modifies the model coefficients that renders the analysis difficult.
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Contributions
To mitigate these difficulties, a modification of the BBL model is introduced. We

present the notion of solutions on a larger domain (0, ℓm) that contains all the time-
dependent domains Ω(t) for every t ∈ (0,T ). In the modified model, the need to explicitly
track the tumour boundary is eliminated via a search method, which reduces the compu-
tational complexity. It should be noted that, no additional variable is introduced in the
model, contrary to level set methods, to track the boundary. The domain (0, ℓm), referred
to as the extended domain, is time-independent and requires only one initial spatial dis-
cretisation. As a result, it is possible to eliminate the need to remesh the domain at each
time step. Also, the discretisation error becomes free from the dependence on ℓ(t). The
modified model is called the extended model. It is established that weak solutions of the
extended model and that of BBL model are equivalent under appropriate conditions, which
are specified later in Theorem 2.3.

Organisation
The extended model of tumour growth is described in Section 2.2. The weak solutions

of the BBL mdodel (2.1) and extended model, and the equivalence between them, are
presented in Section 2.3. The numerical solutions of the extended model are presented in
Section 2.4.

2.2 The extended model

space (x)
0 ℓ0 ℓm

tim
e

(t
)

0

t

T

Ω̃(t)
α̃ = 0

DT\D̃T

D̃T

ℓ̃(t)

n|BT

τ|BT

b

BT

Figure 2.1: Tumour radii and time–space domains in the extended model: D̃T is the time–
space domain (region to the left of the blue curve) defined by (2.2d) and DT is the bounding
box (0,T )× (0, ℓm). The curve BT is the boundary {(t, ℓ(t)) : t ∈ (0,T )}. The unit normal
and tangent vectors to BT are nnn|BT

and τττ |BT
, respectively.
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Define the bounding box DT := (0,T )× (0, ℓm), where ℓm > ℓ̃(t) for t ∈ (0,T ), where
ℓ̃(t) is the tumour radius, which is defined by (2.2d). Define Ω̃(t) = (0, ℓ̃(t)) and time–space
domain D̃T = ∪0<t<T ({t}× Ω̃(t)), see Figure 2.1. The extended model seeks variables α̃, ũ,
and c̃, which are functions of time and space on DT and Ω̃, which is a function of time on
(0,T ). The governing equations are as follows:

∂α̃

∂t
+ ∂

∂x
(ũα̃) = α̃f(α̃, c̃) in DT , (2.2a)

kũα̃

1− α̃
−µ

∂

∂x

(
α̃

∂ũ

∂x

)
=− ∂

∂x
(α̃H (α̃)) in D̃T and ũ := ũ(t, ℓ̃(t)) in DT \D̃T , (2.2b)

∂c̃

∂t
−η

∂2c̃

∂x2 =− Qα̃c̃

1+ Q̂1|c̃|
in D̃T and c̃ := 1 in DT \D̃T ; and (2.2c)

ℓ̃(t) = min{x : α̃(t,x) = 0 on (x,ℓm)} . (2.2d)

The initial conditions are

α̃(0,x) = αe
0(x) on (0, ℓm), c(0,x) = c0(x) ∀x ∈ Ω̃(0), ℓ̃(0) = ℓ0,

where
αe

0(x) :=
{
α0(x) if x ∈ Ω̃(0),

0 otherwise,
and the boundary conditions are

ũ(t,0) = 0, µ∂ũ
∂x

(t, ℓ̃(t)) = H (α̃(t, ℓ̃(t))),

∂c̃

∂x
(t,0) = 0, and c̃(t, ℓ̃(t)) = 1 ∀t ∈ (0,T ).

It is assumed in the sequel that 0<m01 <α0 ≤m02 < 1, where m01 and m02 are constants.
Observe that the ODE (2.1f) is replaced by the search condition (2.2d) in the extended
model. This replacement enables us to capture the tumour boundary without explicitly
resorting to solving a differential equation.

2.3 Weak solutions
In this section, the time–dependent function spaces required to define a weak solution of
the BBL and extended models are presented. The weak solution of the BBL and extended
models are provided in Definitions 2.1 and 2.2, respectively. It is shown in Theorem 2.3
that these two weak solutions are equivalent. Define AT := ∪0<t<T ({t}× (0, ℓr(t))) (with
ℓr = ℓ (resp. ℓr = ℓ̃), AT =DT (resp. AT = D̃T )) and the associated Hilbert spaces

H1
u(AT ) :=

{
u ∈ L2(AT ) : ∂xu ∈ L2(AT ) and u(t,0) = 0 ∀ t ∈ (0,T )

}
and

H1
c (AT ) :=

{
c ∈ L2(AT ) : ∂xc ∈ L2(AT ) and c(t, ℓ̃(t)) = 0 ∀ t ∈ (0,T )

}
.
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Definition 2.1 (weak solution (BBL model)). A weak solution of the BBL model in DT

is a four–tuple (α,u,c,Ω) such that (BM.1)–(BM.4) hold.

(BM.1) The volume fraction satisfies α∈L∞(DT ), 0<m11 ≤ α≤m12 < 1, where m11 ≤
m01 and m02 ≤m12 are constants, and for all φ ∈ C ∞

c

(
DT\({T}×Ω(T ))

)
,

�
DT

(
αf(α,c)φ+(α,uα) ·∇(t,x)φ

)
dxdt+

�
Ω(0)

φ(0,x)α0(x)dx= 0. (2.3)

(BM.2) The velocity u ∈H1
u(DT ) satisfies, for every v ∈H1

u(DT ) and every t ∈ (0,T ),
�

Ω(t)

(
k

α

1−α
uv+µ

∂u

∂x

∂v

∂x

)
dx=

�
Ω(t)

αH (α)∂v
∂x

dx. (2.4)

(BM.3) The nutrient concentration is such that c− 1 ∈ H1
c (DT ) and, for every ζ ∈

H1
c (DT ) with ∂tζ ∈ L2(DT ),

−
�

DT

c∂tζ dxdt−
�

DT

η∂xc∂xζ dxdt+
�

Ω(0)
c0(x)ζ(0,x)dx

+
�

DT

Qαc

1+ Q̂1c
ζdxdt= 0. (2.5)

(BM.4) The tumour radius ℓ(t) satisfies (1.21d).

Definition 2.2 (weak solution (extended model)). A weak solution of the extended model
in DT is a four–tuple (α̃, ũ, c̃, Ω̃) such that (EM.1)–(EM.4) hold.

(EM.1) The volume fraction satisfies α∈L∞(DT ), α̃≥ 0 and for all φ̃∈C ∞
c ([0,T )× (0, ℓm))

�
DT

(
α̃f(α̃, c̃)φ̃+(α̃, ũα̃) ·∇(t,x)φ̃

)
dxdt+

� ℓm

0
φ̃(0,x)αe

0(x)dx= 0. (2.6)

(EM.2) For a fixed t, define Ω̃(t) := (0, ℓ̃(t)), ℓ̃(t) := min{x : α̃(t,x)≤ 0 on (x,ℓm)}, and
D̃T := ∪0<t<T ({t}× Ω̃(t)). Then, it holds ũ

DT \D̃T
= 0 and c̃

|DT \D̃T
= 1.

(EM.3) The velocity ũ|D̃T
∈H1

u(D̃T ) satisfies (2.4) for every v ∈H1
u(D̃T ) and every t ∈

(0,T ), with α and Ω(t) set as α̃ and Ω̃(t), respectively.

(EM.4) The nutrient concentration is such that c̃−1∈H1
c (D̃T ) and for every ζ ∈H1

c (D̃T ),
with ∂tζ ∈ L2(D̃T ) satisfies (2.5) with α and DT set as α̃ and D̃T , respectively.

Next, the equivalence between the weak solutions (BM) and (EM) is presented.
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Theorem 2.3 (Equivalence). 1. If (α,u,c,Ω) is a weak solution of the BBL model, then
(α̃, ũ, c̃, Ω̃) defined by Ω̃ := Ω, and α̃ :=α, ũ := u, c̃ := c in DT , and α̃ := 0, ũ := 0, c̃ := 1
in D\DT , is a weak solution of the extended model.

2. Let (α̃, ũ, c̃, Ω̃) be a weak solution of the extended model. Define (α,u,c,Ω) as Ω := Ω̃
and α := α̃|D̃T

, u := ũ|D̃T
and c := c̃|D̃T

. If there exists constants 0< m̃11 ≤m01 and
m02 ≤ m̃12 < 1 such that m̃11 ≤ α̃|D̃T

≤ m̃12, then (α,u,c,Ω) is a weak solution of the
BBL model.

Proof. 1. Let (α,u,c,Ω) be a weak solution in the sense of Definition 2.1 and φ̃ ∈
C ∞

c ([0,T )× (0, ℓm)). Since φ̃|DT
∈ C ∞

c

(
DT\({T}×Ω(T ))

)
and α̃ = 0 in DT\DT

it holds �
DT

(
α̃f(α̃, c̃)φ̃+(α̃, ũα̃) ·∇(t,x)φ̃

)
dtdx+

�
Ω(0)

φ̃(0,x)α0(x)dx= 0, (2.7)
�

D\DT

(α̃, ũα̃) ·∇(t,x)φ̃dtdx+
�

D\DT

α̃f(α̃, c̃)φ̃dtdx= 0. (2.8)

Add (2.7) and (2.8) to obtain (2.6). The conditions on ũ and c̃, see (EM.3) and (EM.4),
follow naturally from Definition 2.1. Since α̃ > 0 in DT and α̃= 0 in D\DT the con-
dition (EM.2) holds.

2. Let φ ∈ C ∞
c

(
DT\({T}×Ω(T ))

)
. Define φ̃ ∈ C ∞

c ([0,T )× (0, ℓm)) such that φ̃ = φ

in DT . Since Ω(t) = Ω̃(t) for every t, it holds α̃ = 0 in D\DT . Therefore, (2.6)
implies (2.3).
To recover (1.21d) define a vector field F : DT →R2 by F(t,x) := (α̃, ũα̃). Set F|B+

T
=

(F|DT
)|BT

and F|B−
T

= (F|D\DT
)|BT

. Since the weak divergence of the vector field F
is −α̃f(α̃, c̃) ∈ L2(DT ), the normal flux of F is continuous across BT . Since α̃= 0 in
DT\DT , F|B−

T
= 0 holds. Therefore, (F|B+

T
−F|B−

T
) ·nnn|BT

= (α,uα) ·nnn|BT
= 0. Here,

nnn|BT
:=
(∣∣∣ℓ̃′(t)∣∣∣2 +1

)−1/2 (
−ℓ̃′(t),1

)
is the normal to BT , see Figure 2.1. Therefore,

(α,uα) ·nnn|BT
= 0 holds. Since α > 0, ℓ̃′(t) = u(t, ℓ̃(t)) follows. The conditions (EM.3)

and (EM.4) follow naturally from Definition 2.2.

2.4 Numerical scheme and implementation results
Theorem 2.3 provides an alternative method to construct a numerical scheme that does not
require an explicit solution of (2.1f) and computationally intense re–meshing. The idea is
to numerically solve the extended model and take appropriate restrictions as prescribed in
the second part of Theorem 2.3 to obtain the numerical solutions of the BBL model. The
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cell volume fraction equation (2.2a) is solved using cell–centred finite volume methods. In
particular, we employ two methods: upwinding with Godunov flux [105, p. 135] (method
U), and monotone upwinding (MUSCL) with Godunov flux [105, p. 146] (method M). A
brief derivation of the MUSCL method is provided in Appendix A.1.

Choose a positive number αthr ∈ (0,1) and fix it. The number αthr is referred to as the
threshold value. The space and time variables are discretised as follows. Let 0 = x0 < · · ·<
xJ = ℓm be a uniform spatial discretisation with h := xj+1−xj , and 0 = t0 < · · ·< TN = T
be a uniform temporal discretisation with δ := tn+1− tn. The numbers h and δ are called
the spatial and temporal discretisation factors. Define the intervals Xj := (xj ,xj+1) and
Tn := [tn, tn+1). The node–centred intervals are defined by X̃j := (xj −h/2,xj +h/2) for
j = 1, . . . ,J−1, X̃0 := [x0,x0 +h/2], and X̃J := [xJ −h/2,xJ ]. The space and time stepping
are uniform in the discrete schemes in Chapter 2–4 for the sake of simplicity. It should be
noted that the computations in Chapters 2 and 3 and analysis in Chapter 4 carry forward
with nonuniform time and space stepping as well. Let χχχX̃j

be the characteristic function of
X̃j , that is, χχχX̃j

= 1 on X̃j , and χχχX̃j
= 0 outside X̃j . For any real valued function f on R,

define the pointwise average {{f}}Xj
= (f(xj)+f(xj+1))/2. Define the extended initial data

for the nutrient concentration as follows: ∀ x ∈ (0, ℓm), ce0(x) := c0(x) for every x ∈ Ω(0)
and ce0(x) := 1 otherwise.

A detailed discussion on principles employed in selecting appropriate numerical schemes
is provided in Subsection 3.4.2.

Definition 2.4 (Discrete scheme). Initial data approximation: Define

• α0
h by α0

h := α0
j = 1

h

�
Xj
αe

0(x)dx on Xj for 0≤ j ≤ J−1,

• c0h by c0h ∈ P1(Xj) for 0≤ j ≤ J−1 and c0h(xj) := ce0(xj) for 0≤ j ≤ J , and
• Ω0

h := (0, ℓ0h), where ℓ0h = 1.
• Choose ℓm such that ℓ0 < ℓm. Obtain u0

h from (DS.c) below by taking n= 0.

Updation: Construct a finite sequence of 3–tuple of functions (αn
h,u

n
h, c

n
h){0<n≤N−1} on

(0, ℓm) as in (DS.a)–(DS.d) described now.

(DS.a) Set αn
h := αn

j on Xj for 0≤ j ≤ J−1, where
1
δ

(αn
j − αn−1

j ) + 1
h

[
Fn−1

j+1 −Fn−1
j

]
= α

(n−1)+
j (1 − αn−1

j )bn−1
j − αn+

j dn−1
j . (2.9)

For every 0≤ j ≤ J−1, the flux Fn−1
j for upwind and MUSCL schemes are

Upwind: Fn−1
j = u

(n−1)+
j αn−1

j−1 −u
(n−1)−
j αn−1

j and

MUSCL: Fn−1
j = u

(n−1)+
j (pn

j−1(h/2)+αn−1
j−1 )−u(n−1)−

j (−pn
j (h/2)+αn−1

j ), where
pn−1

j = minmod
(
(αn−1

j+1 −α
n−1
j )/h,(αn−1

j −αn−1
j−1 )/h

)
and

minmod(a,b) :=
{

sgn(a)min(|a|, |b|) if ab≥ 0,
0 otherwise .
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Here, un
j = un

h(xj), bnj = {{(1 + s1)cnh/(1 + s1c
n
h)}}Xj

, and dn
j = {{(s2 + s3c

n
h)/(1 +

s4c
n
h)}}Xj

. Note that, when j = 0, u(n−1)
0 = 0 and thus the value of αn−1

−1 can be
arbitrarily fixed, say for example αn−1

−1 =m11.

(DS.b) Set Ωn
h := (0, ℓnh), where the recovered radius at step n, ℓnh, is provided by ℓnh =

min{xj : αn
j < αthr on (xj , ℓm)}.

(DS.c) Set the conforming P1 finite element space on Ωn
h, and its subspace with homoge-

neous boundary condition at x= 0, by

Sn
h :=

{
vn

h ∈ C 0(Ωn
h) : vn

h|Xj
∈ P1(Xj) for 0≤ j < Jn := ℓnh/h

}
and

Sn
0,h := {vn

h ∈ Sn
h : vn

h(0) = 0}.

Then,
un

h :=
{
ũn

h on Ωn
h,

0 on (0, ℓm)\Ωn
h,

where ũn
h ∈ Sn

0,h satisfies

an
h(ũn

h,v
n
h) = Ln

h(vn
h) ∀vn

h ∈ Sn
0,h,

with an
h : Sn

h ×Sn
h → R and Ln

h : Sn
h → R defined by

an
h(w,v) = k

(
αn

h

1−αn
h

w,v

)
Ωn

h

+µ(αn
h∂xw,∂xv)Ωn

h
and

Ln
h(v) = (αn

hH (αn
h),∂xv)Ωn

h
.

(DS.d) Define the finite dimensional vector spaces

Sn
h,0 := {vn

h ∈ Sn
h : vn

h(ℓnh) = 0} and

Sh,ml :=
{
wh : wh =

J∑
j=0

wjχχχX̃j
, wj ∈ R, 0≤ j ≤ J

}
,

and the mass lumping operator Πh : C 0([0, ℓm])→Sh,ml such that Πhw=∑J
j=0w(xj)χχχX̃j

.
Then,

cnh :=
{
c̃nh on Ωn

h,
1 on (0, ℓm)\Ωn

h,

where c̃nh ∈ Sn
h satisfies the boundary condition c̃nh(ℓnh) = 1 and the following discrete

equation, in which Πhc̃
n
h := (Πhc

n
h)|Ωn

h
: for all vn

h ∈ Sn
h,0, it holds

(Πhc̃
n
h,Πhv

n
h)Ωn

h
− (Πhc

n−1
h ,Πhv

n
h)Ωn

h
+ δλ(∂xc̃

n
h,∂xv

n
h)Ωn

h

=−Qδ
(

αn
h Πhc̃

n
h

1+ Q̂1Πhc
n−1
h

,Πhv
n
h

)
Ωn

h

. (2.10)
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The threshold value, αthr, is crucial in establishing the analytical properties of the
numerical solutions and reducing error in the numerical solution. In particular, if αthr is
set as zero, then the numerical diffusion associated with the finite volume schemes produce
significant error in the discrete tumour radius ℓnh.

In all numerical tests the values of the parameters are set to be s1 = 10 = s4, s2 =
0.5 = s3, k = 1 = µ, Q= 0.5, Q̂1 = 0, and ℓ0 = 1.

2.4.1 Numerical experiment 1
In this case, the cell velocity u and the nutrient concentration c are assumed to be unity.
Here, (2.2a) reduces to a semi-linear advection equation, which is solved analytically by the
method of characteristics. The analytical solution is compared with the numerical solutions
in Figure 2.2. The influence of αthr on locating the tumour radius is also studied.

Set u= c= 1. The analytical solution to (2.2a) is

α(t,x) = (c2− c1)α0(x− t)exp((c1− c2)t)
c1α0(x− t)(1− exp((c1− c2)t))+ c2− c1

,

where c1 = 1 and c2 = s2+s3
1+s4

. The initial data considered are

(i) α0(t,x) = 0.5
(
0.02+cos2 (x)

)
χ[0,1],

(ii) α0(t,x) = 0.5
(
0.02+sin2 (x)

)
χ[0,1], and

(iii) α0(t,x) =
χ[0,1]

2
1+exp(x−0.5)2

1+exp(2(x−0.5)2)
,

where χ[0,1] = 1 in [0,1] and 0 otherwise. Here, T = 5, ℓm = 6, δ = 0.01, h= 0.02, αthr = 0.04
(method U), and αthr = 0.004 (method M). It is well known that the second order method
MUSCL significantly reduces the numerical diffusion [42]. The reduction in the numerical
diffusion from method U to method M explains the reduction in the threshold value.

h
αthr

0.01 0.008 0.006 0.004 0.002
0.01 1.67E−3 1.67E−3 1.67E−3 1.67E−3 5.00E−3
0.02 3.33E−3 3.33E−3 6.67E−3 1.33E−3 2.00E−2
0.04 6.67E−3 6.67E−3 2.00E−2 2.67E−2 4.00E−2
0.06 4.31E−2 1.58E−2 2.59E−2 4.60E−2 6.61E−2
0.08 2.10E−2 7.66E−3 1.92E−2 3.26E−2 5.93E−2
0.1 3.33E−2 1.67E−2 1.67E−2 5.00E−2 8.33E−2

Table 2.1: ∆ℓh for case 1, method M.
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Figure 2.2: Case 1: Numerical solutions to the method U and method M are respectively
given in the upper and lower rows. The red and blue lines represent the numerical solutions
using threshold value and domain fixing transformation x→ ξ := x/ℓ(t). Green line is the
analytical solution.

αthrh 0.04 0.03 0.02 0.01
0.01 3.33E−3 3.33E−3 1.66E−2 3.83E−2
0.02 3.33E−2 3.33E−3 1.33E−2 5.68E−2
0.04 1.20E−1 7.33E−2 6.66E−3 6.00E−2

Table 2.2: ∆ℓh for case 1, method U.

The approximate solution obtained in the extended domain captures the properties
of the analytical solution better than the one obtained in the scaled domain, see Figure 2.2,
though it is less accurate towards the discontinuity at ℓNh in method U due to numerical
diffusion. However, method M overcomes this disadvantage; the extended solution agrees
well with the scaled solution towards the discontinuity, and remarkably better in the interior
region, see Figure 2.2. The recovered radius, ℓnh, on the other hand, is in excellent agreement
with the exact radius for both method M and U with a proper choice of the threshold values,
see Tables 2.1 and 2.2.

We analyse the dependency of recovered radius ℓnh on the threshold value αthr for the
MUSCL method. The relative error, ∆ℓh = |ℓ(T )−ℓN

h |
ℓ(T ) , at T = 5 is used as a quantification

of the error in the recovered radius.
Two sets of experiments are conducted; (a) varying αthr at a fixed h (b) varying h
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at a fixed αthr. Table 2.1 shows that there exists a wide range of αthr and h for which
the error remains below 1E−2. This observation assures the accuracy of the proposed
numerical method using the threshold value. For method U the ranges of αthr and h over
which the error remains low are small, which is expected considering the high numerical
diffusion associated with this method.

2.4.2 Numerical experiment 2
In the second case, numerical solutions of the extended model are computed.

The extended model, wherein all variables treated as unknowns is now considered.
The parameters are δ = 0.01, h = 0.01, T = 228, ℓm = 25, αthr = 0.004 (method M), and
αthr = 0.01 (method U). The threshold values are chosen based on Tables 2.1 and 2.2.
The initial condition is α0(x) = 0.8 for 0 ≤ x ≤ 1 and 0 otherwise. Since the exact value
of ℓ(T ) is not available, the error is quantified as the relative difference between tumour
radius obtained from Algorithm 1.1. The relative difference for method U is 6.18E−3 and
method M is 5.69E−3. Therefore, the moving boundary ℓ is well captured by methods
U and M. The numerical solution in the extended domain is in good agreement with the
solution obtained from Section 1.5, see Figure 1.7.

cell volume fraction cell velocity nutrient concentration

Figure 2.3: Case 2: Numerical solutions to the method U and method M are respectively
given in the upper and lower rows with solid lines. The numerical solution of the BBL
model using the domain fixing transformation, see Section 1.5, is denoted using dotted
lines. Each curve represents the variation of the corresponding variable with respect to
space at fixed times t= 25, 50, . . . ,225.
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2.5 Conclusion
The novel numerical technique developed to solve the two phase tumour growth problem is
tested against problems for which analytical solutions are known. For a fixed spatial mesh
size the new method provides more accurate solutions than the standard method of solving
in a scaled domain. The moving boundary is recovered from the numerical solution by
comparing with a threshold value. It is found that an appreciable range of threshold values
can be used along with higher order methods like MUSCL so that the error in the recovered
radius can be kept low. The solutions obtained from this new technique show very good
agreement with solutions obtained using standard methods. The reliability of this new
approach should be beneficial when extending the method to tumour growth problems in
higher dimensions while not solving for the boundary explicitly.
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Chapter 3

Threshold model and numerical
scheme

3.1 Introduction
One-spatial dimensional tumour growth models are usually obtained by assuming that a
higher spatial dimensional tumour grows radially [4, 43–45]. Such one–dimensional models
are much simpler than their intricate higher dimensional versions [11, 46–48]. However,
theoretical and computational difficulties offered by even these simplified one–dimensional
versions are severe. The time–dependent boundary, noncoercive coefficient functions, non-
linearities, and the strong coupling between the equations are a few of the challenges worth
mentioning. Though the model in this chapter also describes free suspension growth, it is
different from the extended model in Chapter 2. The source terms are designed so as to
address the issues mentioned above. Chapter 4 discusses convergence analysis of this novel
model1

Literature
The models that truncate variables by threshold value, referred to as cut-off model

in literature, to obtain estimates that can ensure coercivity, is a rather classical tech-
nique in the variational analysis of PDEs, see for example the work by D. Kroener and
S. Luckhaus [49]. The authors prove the existence of a weak solution to a quasilinear
degenerate partial differential equation that models the flow of two immiscible fluids in a
porous medium using a cut-off technique. Later, it is shown that the limiting solution as
the cut-off threshold approaches zero is a weak solution of the original model (without any
cut-off). A similar analysis is presented in X. Cao and I. S. Pop [50]. It needs to be noted
that the cut–off models considered in [50] and [49] are relatively simple, which enables an
easy proof of existence of a weak solution. An analogous analysis for the threshold model

1The results in this chapter along with that of Chapter 4 is published in IMA J. Numer. Anal.: J.
Droniou, N. Nataraj, and G. C. Remesan, Convergence analysis of a numerical scheme for a tumour
growth model, IMA J. Numer. Anal., (49 pages), URL: https://doi.org/10.1093/imanum/drab016.
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is much harder, see Chapter 4, with the presence of a time dependent boundary.

Contributions
It is shown in Chapter 2 that the model (2.1) can be recast into an extended model,

by which the time–dependent boundary can be eliminated from the system. However,
this model does not allow for any uniform lower bounds on cell volume fraction inside
the computational domain DT , which means that the velocity equation (2.2b) can lose
its coercivity properties. In this chapter, we consider a modification of this extended
model, hereafter called the threshold model, in which we introduce a (small) threshold which
determines the computational domain used for cell velocity and nutrient concentration (see
Figure 3.1(b)). The formulation of a numerical scheme for the threshold model with a
suitable notion of solution is the primary objective of this chapter. The numerical scheme is
designed in such a way that the iterates converge in appropriate norms, up to a subsequence,
and that the limit is a solution to the threshold model.

Though the notion threshold value, αthr, is also employed in Chapter 2 to compute
the numerical solutions (see Definition 2.4) the extended model (2.2) is independent of the
threshold value. Since estimates on the discrete solutions depend on the threshold value
non–uniformly, it is generally difficult to obtain compactness results free from αthr and sub-
sequential convergence as αthr approaches zero (similar to vanishing viscosity methods [106,
p. 45]). Therefore, it is highly challenging to prove that a limit of discrete solutions, if it
exists, as αthr approaches zero solves the extended model weakly. The main contribution of
this chapter is the identification and justification of a tumour growth model based on the
threshold value, of which a subsequential limit of solutions from the Definition 3.2 (discrete
scheme) serves as a weak solution. It seems heuristically that the threshold solutions
converge to an extended solution as αthr approaches zero; however, a rigorous analysis on
this front is yet an open problem.

Organisation
In Section 3.2, the threshold model is introduced. The weak solution to the threshold model
namely threshold solution is presented in Section 3.3. The discrete scheme is described in
Section 3.4 followed by numerical results in Section 3.5.

3.2 Threshold model
We now present the slight modification of the extended model, see Section 2.2. Define
the bounding box DT := (0,T )× (0, ℓm), where ℓm > ℓ̂(t) for t ∈ (0,T ) – see Figure 3.1(b).
Define Ω̂(t) = (0, ℓ̂(t)) and the time–space domain D̂thr

T = ∪0<t<T ({t}× Ω̂(t)).
A constant and positive parameter, αthr, characterises the threshold model, that

seeks variables α,u, and c (functions of time and space on DT ) and ℓ̂(t) (function of time
on (0,T )). The governing equations are as follows.

∂α

∂t
+ ∂

∂x
(uα) = (α−αthr)+f(α,c) in DT , (3.1a)
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(a) Two–phase model of a radially
symmetric tumour. space (x)

0 ℓ0 ℓm

tim
e

(t
)

0

t

T

Ω̌ptq

ℓ̌1ptq “ upt, ℓ̌ptq

DT

ℓ̌ptq

DT

(b) Time–space domain DT and its
bounding box DT = (0,T )× (0, ℓm).

Figure 3.1: Radially symmetric tumour and corresponding time–space domains.

kuα

1−α
−µ

∂

∂x

(
α

∂u

∂x

)
=− ∂

∂x
(αH (α)) in D̂thr

T and u := u(t, ℓ(t)) in DT \D̂thr
T , (3.1b)

∂c

∂t
−λ

∂2c

∂x2 =− Qαc

1+ Q̂1|c|
in D̂thr

T and c := 1 in DT \D̂thr
T ; and (3.1c)

ℓ̂(t) = min{x : α(t,x)≤ αthr on (x,ℓm)} . (3.1d)

Here, H (α) is redefined by H (α) := (α−αR)+

(1−α)2 . Observe, that this definition is consistent

with H (α) := (α−αR)
(1−α)2 Heav(α−αmin) when αmin = αR. The initial conditions are

α(0,x) = αe
0(x) on (0, ℓm), c(0,x) = c0(x) ∀x ∈ Ω̂(0), ℓ(0) = ℓ0, (3.1e)

where
αe

0(x) :=
{
α0(x) if x ∈ Ω̂(0),

0 otherwise.
The boundary conditions are

u(t,0) = 0, µ∂u
∂x

(t, ℓ̂(t)) = H (α(t, ℓ̂(t))),

∂c

∂x
(t,0) = 0, and c(t, ℓ̂(t)) = 1 ∀t ∈ (0,T ). (3.1f)

In the sequel, it is assumed that

0<m01 ≤ α0 ≤m02 < 1 on Ω̂(0), (3.2)

where m01 and m02 are constants.
Differences between the threshold and extended models, and their physical implica-

tions, are described in the next subsection.
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3.2.1 Difference between extended and threshold models

Cell volume fraction and tumour radius
The cell fraction is governed by (3.1a) in the domain DT . The tumour radius ℓ̂(t)

at time t is the smallest number in (0, ℓm) such that α(t,x) is below αthr for every x ≥
ℓ̂(t). The source term αf(α,c) in (2.2a) is modified to (α−αthr)+f(α,c) in (3.1a). These
modifications are motivated by population dynamics. The new source term accounts for the
fact that, in the absence of a sufficient amount of cells, the reaction term that drives their
growth remains dormant. Avascular tumour growth causes nutrient–limited growth, and
away from the proliferating rim of high cellular volume fraction, tumour cells are known
to become quiescent and even further from the proliferating rim, they become part of the
necrotic core [51]. This effect is also accurately captured by modifying the source term.
Moreover, at the mathematical level, the modification plays a crucial role in obtaining the
boundedness of cell volume fraction. In the limiting case where αthr approaches zero, the
continuous function (α−αthr)+f(α,c) approaches αf(α,c), and the tumour radius is the
smallest number above which no tumour cells are present.
Cell velocity

The term H (α) in (2.2b) is replaced by (α−αR)+/(1−α)2 in (3.1b). In the case
αmin ̸= αR, the nonlinear term (α−αR)Heav(α−αmin) in H (α) is discontinuous with
respect to α, which makes proving the existence of a solution to (3.1) difficult. The major
part of simulations in [1] were done under the assumption that αmin = αR. Also, the insta-
bility created by the discontinuity of H (α) (with αmin ̸= αR) is not observed in [1, Figure
8] since the numerical solution of cell volume fraction remains greater than the parameter
value αmin = 0.6 and the values of µ and k are properly chosen. Hence, H (α) behaves
throughout in [1] as a continuous function. We ran simulations with αmin ̸= αthr and, when
the cell volume fraction crosses the discontinuity at αmin, clear instability of the model
was observed. The continuity of H (α) is essential to obtain a priori estimates (see in
particular the proof of Proposition 4.15), and to apply limit arguments to the numerical
scheme. Physically, this modification means that tumour cells only exhibit repulsive inter-
actions. The analysis hereafter could be done with other choices of H , in particular choices
that reproduce the attractive/repulsive features of the original model, provided that H is
(Lipschitz)-continuous.
Nutrient concentration

The original nutrient source term −Qαc/(1 + Q̂1c) in (2.2c) is modified in (3.1c)
to ensure the nonnegativity of nutrient concentration (which represents a concentration).
Each nonnegative solution c of (3.1c) also satisfies (3.1c) with the original source term
−Qαc/(1 + Q̂1c), since c= |c|. Therefore, to establish the existence of a solution to (3.1c)
with the original source term −Qαc/(1 + Q̂1c), it is sufficient to establish the existence of
a nonnegative solution to (3.1c). The convergence analysis in Chapter 4 shows that (3.1c)
indeed has a nonnegative weak solution, which is thus a solution of (3.1c) with the original
source term −Qαc/(1+ Q̂1c).
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3.3 Threshold solution

space (x)
0 ℓ0 ℓm

tim
e

(t
)

0

t

T

Ω̌ptq
s

Ωpsq

ℓ̌1ptq “ upt, ℓ̌ptqq

α ď αthr

DT zDthr
TDT

ℓ̌ptq

ℓptq

Figure 3.2: Tumour radii and time–space domains: DT is time–space domain (region to
the left of the blue curve) defined by (2.2d), Dthr

T (region to the left of the pink curve) is
the time–space domain defined by the Threshold solution, Definition 3.1, and DT is the
bounding box (0,T )× (0, ℓm).

We define the notion of a weak solution for the threshold model (3.1), which is further
referred to as the threshold solution, see Definition 3.1, wherein the condition to be satisfied
by the tumour radius is further relaxed. Here, it is only demanded that the volume fraction
of the tumour cells outside the time–space domain must be less than or equal to αthr, see
Figure 3.2. The convergence analysis in Chapter 4 ensures the existence of such a domain.
It remains open whether such a domain is unique and coincides with the time–space domain
wherein the tumour radius satisfies (2.2d) or (3.1d). Three different notions of tumour radii
heve been discussed so far and are summarised in Table 3.1 for clarity.

The introduction of the threshold into the definition of the domain and in the source
term helps in Chapter 4 to obtain boundedness and bounded variation estimates for the
numerical solution of (3.1a), and thus enables the numerical scheme to converge to the
weak form (3.4a). The details presented in Subsection 3.4.2 complement this discussion.

Each threshold solution in the sense of Definition 3.1 corresponds to a pair of fixed
constants m11 and m12, which ensure the positivity and boundedness (strictly below 1) of
the volume fraction in Dthr

T = ∪0<t<T ({t}× (0, ℓ(t))) defined by (TS.2) in Definition 3.1.
Let (·, ·)X be the standard L2 inner product on a set X ⊂ Rd, d ≥ 1. The domain

Dthr
T defined by (TS.2) in Definition 3.1 is open and bounded. Define the following vector

spaces on Dthr
T :

H1,u
∂x (Dthr

T ) := {v ∈ L2(Dthr
T ) : ∂xv ∈ L2(Dthr

T ) and v(t,0) = 0 ∀ t ∈ (0,T )}, and
H1,c

∂x (Dthr
T ) := {v ∈ L2(Dthr

T ) : ∂xv ∈ L2(Dthr
T ) and v(t, ℓ(t)) = 0 ∀ t ∈ (0,T )}.
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Notation Description
ℓ

(BBL model,
Section 1.5)

Solution to the ordinary differential equation
ℓ′(t) = u(t, ℓ(t)), ℓ(0) = ℓ0

Tumour radius defined in the BBL model.

ℓ̂
(Threshold

model)

min{x : α(t,x)≤ αthr on (x,ℓm)}
Definition of tumour radius in the threshold model (3.1).

ℓ
(Threshold
solution)

∀x≥ ℓ, α(t,x)≤ αthr
The condition above is to be satisfied by ℓ= ℓ(t), so that

(α,c,u,Ω) with Ω(t) = (0, ℓ(t)) is a Threshold solution in the
sense of Definition 3.1.

Table 3.1: Description of various notions of tumour radii.

Define the inner product on the vector space H1,ϱ
∂x (Dthr

T ), where ϱ ∈ {u,c}, as follows: for
w,v ∈H1,ϱ

∂x (Dthr
T )

(w,v)
H1,ϱ

∂x (Dthr
T ) := (w,v)Dthr

T
+(∂xw,∂xv)Dthr

T
. (3.3)

The inner product (3.3) induces a norm ||w||
H1,ϱ

∂x (Dthr
T ) for which H1,ϱ

∂x (Dthr
T ) is a Hilbert

space. Since for each v ∈ H1,ϱ
∂x (Dthr

T ) and each t ∈ (0,T ) the time slice v(t, ·) belongs to
H1(0, ℓ(t)), the traces are well defined and the quantities v(t,0) and v(t, ℓ(t)) are meaningful.

Definition 3.1 (Threshold solution). Let 0<m11 <m12 < 1 be fixed constants that satisfy
m11 ≤m01 and m12 ≥m02, where m01,m02 satisfy (3.2). Fix a threshold value αthr ∈ (0,1).
A threshold solution (with threshold αthr) and domain Dthr

T of the threshold model in DT

corresponding to the constants m11 and m12 is a 4-tuple (α,u,c,Ω) such that the following
conditions hold.

(TS.1) The volume fraction α ∈ L∞(DT ) is such that, for all φ ∈ C ∞
c ([0,T )× (0, ℓm)),

�
DT

((α,uα) ·∇t,xφ+(α−αthr)+ f(α,c)φ)dtdx

+
�

Ω(0)
φ(0,x)α0(x)dx= 0, (3.4a)

and it holds 0<m11 ≤ α|Ω(t) ≤m12 < 1 for every t ∈ [0,T ).

(TS.2) The set Dthr
T is of the form Dthr

T = ∪0<t<T ({t}×Ω(t)), where Ω(t) = (0, ℓ(t)), and
we have α≤ αthr on DT \Dthr

T .
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(TS.3) The velocity u is such that u ∈H1,u
∂x (Dthr

T ) and, for all v ∈H1,u
∂x (Dthr

T ),
� T

0
at(u(t, ·),v(t, ·))dt=

� T

0
Lt(v(t, ·))dt, (3.4b)

where at :H1(Ω(t))×H1(Ω(t))→ R is the bilinear form and Lt :H1(Ω(t))→ R is
the linear form defined by:

at(u,v) = k
(

α

1−α
u,v

)
Ω(t)

+µ(α∂xu,∂xv)Ω(t) and

Lt(v) = (αH (α),∂xv)Ω(t) .

We extend u to DT by setting u|
DT \Dthr

T

:= 0.

(TS.4) The nutrient concentration c is such that c− 1 ∈ H1,c
∂x (Dthr

T ), c ≥ 0 and, for all
v ∈H1,c

∂x (Dthr
T ) such that ∂tv ∈ L2(Dthr

T ),

−
�

Dthr
T

c∂tvdxdt+λ

�
Dthr

T

∂xc∂xvdxdt−
�

Ω(0)
c0(x)v(0,x)dx

+Q

�
Dthr

T

αcv

1+ Q̂1|c|
dxdt= 0. (3.4c)

We extend c to DT by setting c|DT \Dthr
T

:= 1.

ℓm x
|

α
th

r

α(t, ·)

αn
h

ℓnh

αn
h < αthrΩn

h

Figure 3.3: Selection of ℓnh based on the value of αn
h.

The existence of a threshold solution through the convergence of discrete solutions (Defi-
nition 3.2) is established in Chapter 4.

3.4 Numerical solution
The model equations are discretised using the principles in Chapter 2, see Section 2.4. We
discretise (3.1a) using a finite volume method, (3.1b) using a Lagrange P1–finite element
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method, and (3.1c) using backward Euler in time and mass lumped P1 finite element method
in space.

Recall the space and time discretisation from Section 2.4. Let 0 = x0 < · · ·< xJ = ℓm
be a uniform spatial discretisation with h := xj+1 − xj , and 0 = t0 < · · · < TN = T be
a uniform temporal discretisation with δ := tn+1− tn. The numbers h and δ are called
the spatial and temporal discretisation factors. Define the intervals Xj := (xj ,xj+1) and
Tn := [tn, tn+1). The node–centred intervals are defined by X̃j := (xj−h/2,xj +h/2) for j =
1, . . . ,J−1, X̃0 := [x0,x0 +h/2], and X̃J := [xJ −h/2,xJ ]. We let χχχX̃j

be the characteristic
function of X̃j , that is, χχχX̃j

= 1 on X̃j , and χχχX̃j
= 0 outside X̃j . For any real valued function

f on R, define the pointwise average {{f}}Xj
= (f(xj) + f(xj+1))/2. Define the extended

initial data as follows: ∀ x ∈ (0, ℓm)

αe
0(x) :=

{
α0(x) if x ∈ Ω(0),

0 otherwise. and ce0(x) :=
{
c0(x) if x ∈ Ω(0),

1 otherwise.

Definition 3.2 (Discrete scheme). Fix a threshold αthr ∈ (0,1) and ℓm > ℓ0 such that
(0, ℓ0)⊂ (0, ℓm) and Dthr

T ⊂DT .

Initial data approximation: Define

• α0
h by α0

h := α0
j = 1

h

�
Xj
αe

0(x)dx on Xj for 0≤ j ≤ J−1,

• c0h by c0h ∈ P1(Xj) for 0≤ j ≤ J−1 and c0h(xj) := ce0(xj) for 0≤ j ≤ J , and
• Ω0

h := (0, ℓ0h), where ℓ0h = 1.
• Obtain u0

h from (DS.c) below by taking n= 0.

Updation: Then, construct a finite sequence of 3–tuple of functions (αn
h,u

n
h, c

n
h){0<n≤N−1}

on (0, ℓm) as in (DS.a)–(DS.d) described now.

(DS.a) Set αn
h := αn

j on Xj for 0≤ j ≤ J−1, where
1
δ

(αn
j −αn−1

j )

+ 1
h

[
u

(n−1)+
j+1 αn−1

j −u(n−1)−
j+1 αn−1

j+1 −u
(n−1)+
j αn−1

j−1 +u
(n−1)−
j αn−1

j

]
= (αn−1

j −αthr)+(1−αn−1
j )bn−1

j − (αn
j −αthr)+dn−1

j , (3.5)

where un
j = un

h(xj), bnj = {{(1 + s1)cnh/(1 + s1c
n
h)}}Xj

, and dn
j = {{(s2 + s3c

n
h)/(1 +

s4c
n
h)}}Xj

. Note that, when j = 0, u(n−1)
0 = 0 and thus the value of αn−1

−1 can be
arbitrarily fixed, say for example αn−1

−1 =m11.

(DS.b) Set Ωn
h := (0, ℓnh), where the recovered radius at step n is provided by ℓnh = min{xj :

αn
j < αthr on (xj , ℓm)}, see Figure 3.3.
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(DS.c) Set the conforming P1 finite element space on Ωn
h, and its subspace with homoge-

neous boundary condition at x= 0, by

Sn
h :=

{
vn

h ∈ C 0(Ωn
h) : vn

h|Xj
∈ P1(Xj) for 0≤ j < Jn := ℓnh/h

}
and

Sn
0,h := {vn

h ∈ Sn
h : vn

h(0) = 0}.

Then,
un

h :=
{
ũn

h on Ωn
h,

0 on (0, ℓm)\Ωn
h,

where ũn
h ∈ Sn

0,h satisfies

an
h(ũn

h,v
n
h) = Ln

h(vn
h) ∀vn

h ∈ Sn
0,h, (3.6)

with an
h : Sn

h ×Sn
h → R and Ln

h : Sn
h → R defined by

an
h(w,v) = k

(
αn

h

1−αn
h

w,v

)
Ωn

h

+µ(αn
h∂xw,∂xv)Ωn

h
and

Ln
h(v) = (αn

hH (αn
h),∂xv)Ωn

h
. (3.7)

(DS.d) Define the finite dimensional vector spaces

Sn
h,0 := {vn

h ∈ Sn
h : vn

h(ℓnh) = 0} and

Sh,ml :=
{
wh : wh =

J∑
j=0

wjχχχX̃j
, wj ∈ R, 0≤ j ≤ J

}
,

and the mass lumping operator Πh : C 0([0, ℓm])→Sh,ml such that

Πhw =
J∑

j=0
w(xj)χχχX̃j

.

Then,
cnh :=

{
c̃nh on Ωn

h,
1 on (0, ℓm)\Ωn

h,

where c̃nh ∈ Sn
h satisfies the boundary condition c̃nh(ℓnh) = 1 and the following discrete

equation, in which Πhc̃
n
h := (Πhc

n
h)|Ωn

h
: for all vn

h ∈ Sn
h,0, it holds

(Πhc̃
n
h,Πhv

n
h)Ωn

h
− (Πhc

n−1
h ,Πhv

n
h)Ωn

h
+ δλ(∂xc̃

n
h,∂xv

n
h)Ωn

h

=−Qδ

 αn
h Πhc̃

n
h

1+ Q̂1
∣∣∣Πhc

n−1
h

∣∣∣ ,Πhv
n
h


Ωn

h

. (3.8)
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Remark 3.3 (Comparison between Definitions 3.2 and 2.4). Though the discrete schemes
in Chapter 3 and Chapter 2 (Defintions 3.2 and 2.4, respectively) are similar, two key
differences needs to be noted. The source terms in (3.5) involves the threshold value, which
is not the case with (2.9). Similarly, the source term in (3.8) has absolute value of Πhc

n−1
h

in the denominator, while (2.10) has not. These modifications ensure that the discrete
scheme (Definition 3.2) converge to a threshold solution.

The Definition 3.2 (discrete scheme) provides a family of discrete spatial functions at
each time index n, 0≤ n < N , from which a time–space function can be reconstructed.

Definition 3.4 (Time–reconstruct). For a family of functions (fn
h ){0≤n<N} on a set X,

define the time–reconstruct fh,δ : (0,T )×X → R as fh,δ := fn
h on Tn for 0≤ n < N .

Definition 3.5 (Discrete solution). The 4-tuple (αh,δ,uh,δ, ch,δ, ℓh,δ), where αh,δ, uh,δ, ch,δ,
and ℓh,δ are the respective time–reconstructs corresponding to the families (αn

h)n, (un
h)n, (cnh)n,

and (ℓnh)n obtained from (DS.a)–(DS.d), is called the discrete threshold solution.

3.4.1 Physical properties of the threshold model
A few properties of the threshold model are discussed here. The numerical methods have
been selected to preserve these properties as shown in this subsection. Define the continuous
function spaces C 1(DT ) and C 1,2(DT ) by

C 1(DT ) :=
{
c :DT → R : ∂c

∂t
,
∂c

∂x
∈ C (DT )

}
and

C 1,2(DT ) :=
{
c :DT → R : ∂c

∂t
,
∂2c

∂x2 ∈ C (DT )
}
.

Conservation of mass by the cell volume fraction equation

Lemma 3.6 (Continuous case). If (α,u,c,ℓ) is a solution of (3.1) such that α and u belong
to C 1(DT ), then α satisfies the mass conservation property

� ℓ(T )

0
α(T,x)dx=

� ℓ0

0
α0(x)dx+

� T

0

� ℓ(t)

0
(α−αthr)+f(α,c)dxdt.

Proof. Integrate (3.1a) over DT to obtain
� T

0

� ℓ(t)

0
(α−αthr)+f(α,c)dxdt =

� T

0

� ℓ(t)

0

∂α

∂t
dxdt+

� T

0

� ℓ(t)

0

∂

∂x
(uα) dxdt. (3.9)

In (3.9), apply Leibniz integral rule for the first term on the right–hand side and integrate
∂

∂x(uα) in the second term over the interval (0, ℓ(t)) to arrive at
� T

0

∂

∂t

� ℓ(t)

0
α(t,x)dx

 dx−
� T

0

[
ℓ′(t)−u(t, ℓ(t))

]
α(t, ℓ(t))dt
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−
� T

0
u(t,0)α(t,0)dt=

� T

0

� ℓ(t)

0
(α−αthr)+f(α,c)dxdt. (3.10)

In the left hand side of (3.10), integrate the term over (0,T ), use ℓ′(t) = u(t, ℓ(t)) in the
second term, and u(t,0) = 0 in the third term to obtain the desired result.

Remark 3.7. Lemma 3.6 implies that the total cell volume fraction at time T is the sum
of the total cell volume fraction present initially and the total cell volume fraction produced
by the source term (α−αthr)+f(α,c) during the time interval (0,T ), which is precisely the
mass conservation property.

Lemma 3.8 (Discrete case). Let αh,δ : DT →R and ch,δ : DT →R be the time–reconstructions
corresponding to the family of functions (αn

h)n obtained from (3.5) and (cnh)n obtained
from (3.8), respectively. Then, αh,δ satisfies the discrete mass conservation property

� ℓm

0
αh,δ(T,x)dx=

� ℓ0

0
α0(x)dx

+
� T

0

� ℓm

0
(αh,δ(t,x)−αthr)+(1−αh,δ(t,x))

(1+ s1)Πh,δch,δ(t,x)
1+ s1Πh,δch,δ(t,x)

dxdt

−
� T +δ

δ

� ℓm

0
(αh,δ(t,x)−αthr)+ s2 + s3Πh,δch,δ(t,x)

1+ s4Πh,δch,δ(t,x)
dxdt. (3.11)

Proof. Multiply (3.5) by h and sum over j = 0, . . . ,J−1 and n= 1, . . . ,N and use the fact
that un−1

0 = 0 = un−1
J to obtain

J−1∑
j=0

hαN
j −

J−1∑
j=0

hα0
j =

N∑
n=1

δ
J−1∑
j=0

h(αn−1
j −αthr)+(1−αn−1

j )bn−1
j

−
N∑

n=1
δ

J−1∑
j=0

h(αn
j −αthr)+dn−1

j . (3.12)

Note that each term in the sum [u(n−1)+
j+1 αn−1

j −u(n−1)−
j+1 αn−1

j+1 −u
(n−1)+
j αn−1

j−1 +u(n−1)−
j αn−1

j ]
in (3.5) cancels with the same term of opposite sign coming from (3.5) written for j+ 1
or j− 1, and that the boundary terms vanish due to the boundary conditions. Use the
definitions of bnj and dn

j (see (DS.a) in Definition 3.2) and the definition of the time–
reconstruction (see Definition 3.5) to arrive at (3.11) from (3.12).

Nonnegativity and boundedness of the nutrient concentration equation

Lemma 3.9 (Continuous case). If c satisfies (3.1c) with α ≥ 0 and belongs to C 1,2(DT ),
then 0≤ c≤ 1.
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Proof. Positivity: Multiply (3.1c) by the test function −c− = min(c,0) and integrate the
product on the domain DT to obtain

−
� T

0

� ℓ(t)

0
c− ∂c

∂t
dxdt + λ

� T

0

� ℓ(t)

0
c− ∂2c

∂x2 dxdt =
� T

0

� ℓ(t)

0
c− Qαc

1+ Q̂1|c|
dxdt. (3.13)

In (3.13), use −c− ∂c
∂t = 1

2
∂
∂t(c

−)2 to transform the first term on the left–hand side and
apply integration by parts to the spatial integral in second term to obtain
� T

0

� ℓ(t)

0

1
2
∂

∂t
(c−)2 dxdt + λ

� T

0

� ℓ(t)

0

∣∣∣∣∣∂c−

∂x

∣∣∣∣∣
2

dxdt + λ

� T

0
c−(t, ℓ(t)) ∂c

∂x
(t, ℓ(t))dt

−λ
� T

0
c−(t,0) ∂c

∂x
(t,0)dt=

� T

0

� ℓ(t)

0
c−

Qαc

1+ Q̂1|c|
dxdt. (3.14)

Apply Leibniz integral rule on the first term in the left hand side of (3.14) and use the facts
that c−(t, ℓ(t)) = 0 and ∂c

∂x(t,0) = 0 to arrive at

1
2

� T

0

∂

∂t

� ℓ(t)

0
(c−)2 dx

dt + λ

� T

0

� ℓ(t)

0

∣∣∣∣∣∂c−

∂x

∣∣∣∣∣
2

dxdt

=
� T

0

� ℓ(t)

0
c−

Qαc

1+ Q̂1|c|
dxdt. (3.15)

Carry out the time integration over the interval (0,T ) in first term in the left hand side
of (3.15) and use the fact that c−(0, ·) = 0 to obtain

λ

� T

0

� ℓ(t)

0

∣∣∣∣∣∂c−

∂x

∣∣∣∣∣
2

dxdt+
� T

0

� ℓ(t)

0

Qα

1+ Q̂1|c|

(
c−
)2

dxdt≤ 0.

Since α ≥ 0 this relation shows that ∂xc
− = 0 and thus, since c−(t, ℓ(t)) = 0, that c− = 0.

This proves that c≥ 0 almost everywhere on DT .
Boundedness: Multiply (3.1c) by the test function (c−1)+ = max(c−1,0) and integrate
the product on the domain DT to obtain

� T

0

� ℓ(t)

0
(c−1)+∂c

∂t
dxdt−λ

� T

0

� ℓ(t)

0
(c−1)+ ∂

2c

∂x2 dxdt

=−
� T

0

� ℓ(t)

0

Qα

1+ Q̂1|c|
c(c−1)+ dxdt. (3.16)

In (3.16), use (c− 1)+ ∂c
∂t = 1

2
∂
∂t

(
(c−1)+

)2
to transform the first term in the left–hand

side, apply integration by parts to the spatial integral in the second term, and use the
condition (3.1f) to obtain

� T

0

� ℓ(t)

0

1
2
∂

∂t
((c−1)+)2 dxdt+

� T

0

� ℓ(t)

0

∣∣∣∣∣ ∂∂x(c−1)+
∣∣∣∣∣
2

dxdt
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=−
� T

0

� ℓ(t)

0

Qα

1+ Q̂1|c|
c(c−1)+dxdt. (3.17)

Apply the Leibniz integral rule on the first term in the left hand side of (3.17), carry out
the time integration over the interval (0,T ), and use the condition (7.13f) to obtain

� T

0

� ℓ(t)

0

∣∣∣∣∣ ∂∂x(c−1)+
∣∣∣∣∣
2

dxdt+
� T

0

� ℓ(t)

0

Qα

1+ Q̂1|c|
((c−1)+)2dxdt≤ 0. (3.18)

Result (3.18) implies that (c− 1)+ = 0, which yields that c ≤ 1 almost everywhere on
DT .

The positivity and boundedness results corresponding to the discrete nutrient con-
centration ch,δ, obtained from the numerical scheme (3.8), is provided in Lemma 4.12 in
Chapter 4.

3.4.2 Comments on the numerical method
This subsection substantiates the particular choices of numerical methods used to compute
the discrete solution in Definition 3.5.
Volume fraction equation
The volume fraction equation (3.1a) is a continuity equation with the source term αf(α,c),
and the conserved variable α (see Lemma 3.6) is transported with a velocity u. Finite
volume methods are the natural choice of numerical methods that preserve conservation
property at the discrete level [107]. An upwinding finite volume scheme is used in (3.5).
Upwinding treats the boundary flux values differently depending on the direction (sign)
of the velocity as in (3.19), see [105, p. 159, Eq. (6.7)]. If the velocity at the node xj is
positive (resp. negative), then the material towards that node is upwinded from the control
volume Xj−1 (resp. Xj). This means that the flux at the boundary xj between any two
intervals Xj−1 and Xj is approximated by: for any t ∈ (0,T )

(ucα)(t, ·)|xj
≈ uh,δ(t,xj)+αh,δ(t, ·)|Xj−1−uh,δ(t,xj)−αh,δ(t, ·)|Xj

. (3.19)

Therefore, the spatial difference (ucα)(t, ·)|xj+1− (ucα)(t, ·)|xj
at t = tn−1 is approximated

as

(ucα)(t, ·)|xj+1− (ucα)(t, ·)|xj
≈
(
u

(n−1)+
j+1 αn−1

j −u(n−1)−
j+1 αn−1

j+1

)
−
(
u

(n−1)+
j αn−1

j−1 −u
(n−1)−
j αn−1

j

)
,

which leads to (3.5).
Though the upwinding flux (3.19) is one of the simplest numerical fluxes that leads to

a stable scheme, it introduces significant numerical diffusion in the discrete solution αh,δ.
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Hence, if we locate the time-dependent boundary ℓnh as min{xj : αn
h = 0 on (xj , ℓm]}, then

ℓh,δ will have notable deviation from the exact solution, which will further tamper the qual-
ity of the solutions uh,δ and chδ. To eliminate this propagating error, the boundary point ℓnh
is located by min{xj : αn

h <αthr on (xj , ℓm]} (see Figure 3.3). However, the residual volume
fraction of αthr on [ℓnh, ℓm] might cause the reaction term αf(α,c) to contribute a spurious
growth; the modification (α−αthr)+f(α,c) overcomes this problem. More importantly,
αthr acts as a lower bound on the value of αh,δ on XJn−1 (the right most control volume
in (0, ℓnh)) at each time tn. A detailed numerical study of the dependence of the discrete
solution on αthr and the optimal choice of αthr that minimises the error incurred in ℓh,δ is
done in Chapter 2.

Velocity equation
The velocity equation (3.1b) is elliptic with Dirichlet boundary condition at x= 0 and Neu-
mann boundary condition at x= ℓnh for each tn, and hence the Lagrange P1 finite element
method is used to discretise (3.1b). A specific benefit of using conforming finite elements
for approximating the velocity is that it naturally provides nodal values (degrees of freedom
of the scheme) of uh,δ at the boundaries of each Xj ; these nodal velocities can be directly
used in the finite volume discretisation of (3.19) to compute fluxes at the control volume
interfaces.

Nutrient concentration equation
The choice of time–implicit mass lumped finite element method [98, Section 7.3.5] for the
nutrient concentration equation (3.1c) is substantiated mainly by two reasons. Firstly, the
choice of mass lumping as opposed to a standard Lagrange P1 finite element method is
important to obtain a discrete maximum principle for ch,δ. Secondly, the backward time
procedure ensures the L2(0,T ;H1(0, ℓm)) stability of the mass lumped solutions. This is
essential for the convergence analysis in Chapter 4. Also, the mass lumping operator Πh

used in (DS.d) preserves the L1 norm of a piecewise linear function, and thus only locally
redistributes the total amount of material whose concentration is specified by ch,δ(t, ·) at
each time t ∈ (0,T ).

3.5 Numerical example
The model and numerical parameter values used in the simulations shown in Figure 3.4
are provided in Table 3.2. Observe that all parameter values are dimensionless. The model
values k, µ, Q, Q̂1, s1, s2, s3, s4, and αR are chosen from [1]. The threshold value αthr and
domain length ℓm are chosen based on the numerical experiments performed in [52]. The
final time is set as T∗ = 50.

The initial conditions employed in the simulations shown in Figure 3.4 are chosen
from [1] and are as follows: for every x ∈ (0,1), α0(x) = 0.8 and c0(x) = 1.

We plot the variation of αh,δ(t, ·), uh,δ(t, ·) and ch,δ(t, ·) for the times t∈ {5,10, . . . ,50}
on the corresponding domains (0, ℓh,δ(t)) in Figures 3.4(a), 3.4(b), and 3.4(c), respectively.
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Parameter Value Parameter Value
k 1 µ 1
Q 0.5 Q̂1 0

s1, s4 10 s2, s3 0.5
αR 0.8 ℓm 10
δ 10−3 h 5×10−2

ρ 0.1 αthr 0.1

Table 3.2: The dimensionless model and numerical parameters values used in simulation
shown in Figure 3.4.
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Figure 3.4: Numerical solution of the Definition 3.2 (discrete scheme) with δ = 10−3 and
h= 5×10−2. A curve in each of the Figures 3.4(a), 3.4(b), and 3.4(c) represents the spatial
variation of cell volume fraction, cell velocity, and nutrient concentration, respectively on
the tumour domain (0, ℓh,δ(t)) at a time t as colour-coded in the legends. Figure 3.4(d)
represents the evolution of the tumour radius ℓ(t) with respect to the time.

The variation of ℓh,δ(t) with respect to time is depicted in 3.4(d). Observe from Fig-
ures 3.4(a) and 3.4(c) that the volume fraction and nutrient concentration decrease towards
x = 0 due to the slower diffusion of nutrient towards x = 0 and the accelerated cell death
owing to nutrient starvation. This effect is more noticeable in larger tumours than smaller
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ones. The positive value of cell velocity towards the tumour boundary and negative value
towards the interior suggests that the outermost cells flow outwards and the internal cells
flow inwards. Note that ch,δ is unity at ℓh,δ(t), and this unlimited supply of nutrient results
in the steady increase of tumour size as illustrated in Figure 3.4(d).

3.6 Conclusion
A variant of the extended model, termed as threshold model, is developed to mitigate the
theoretical difficulties offered by extended model such as lack on uniform bounds on cell
volume fraction and coercivity on cell velocity. An appropriate notion of a weak solution,
called threshold solution characterised by the threshold value, is introduced. A discrete
scheme that respects the physical properties of the model equations (3.1a)–(3.1c) is designed
and implemented. The solutions obtained from the discrete scheme (Definition 3.2) are in
very good agreement with the solutions obtained using standard techniques in Chapter 1
and using the discrete scheme (Definition 2.4) of Chapter 2.
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Chapter 4

Convergence analysis of the
numerical scheme for threshold model

4.1 Introduction
The main purpose of this chapter is to present an analytical framework, by which the
existence of a threshold solution in Definition 3.1 can be established. The analysis in
this chapter is novel and distinct from those available in the literature for free boundary
problems, see Section 2.1.

Literature
Despite the fact that tumour growth models have been popular since the seventies [53,

54], the theoretical literature available on this field is very few. Recently, J. Zheng and S.
Cui [55] considered existence of solutions for a tumour growth model with volume fraction
and pressure in the tumour region as the unknown variables. The model equations in [55] are
fully linear, while the boundary conditions are nonlinear, and a local well-posedness result
is proved. A similar linear model is considered by C. Calzada et al. [56], and equivalence to
an extended problem in a larger domain is proved. A more advanced model is considered by
N. Zhang and Y. Tao [57], where the nutrient concentration is also considered as a variable
and the existence of solutions is obtained by transforming the fixed domain to a unit ball
in R. Studies on convergence analysis are scarce. J. A. Mackenzie and A. Madzvamuse [12]
have shown the convergence of a finite difference scheme for a single variable tumour growth
model with a nonlinear source term on a time dependent boundary.

Contribution
This chapter aims to prove that the family of discrete solutions, see Definition 3.5,

converge, up to a subsequence. Moreover, any limit of a convergent subsequence is estab-
lished to be a threshold solution. Bounded variation estimates for the volume fraction, H1

and L∞ estimates for the cell velocity, and spatial and temporal estimates for the derivatives
of nutrient concentration are obtained. The analysis in this chapter caters for the model
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with all three variables (cell volume fraction, cell velocity, and nutrient concentration). To
the best of our knowledge, it is the first convergence analysis of this kind.

Organisation
In Section 4.2, the main theorems are stated. The compactness and convergence properties
of the numerical solutions from Definition 3.2 are derived in Section 4.3. In Section 4.4, we
show that the limit of numerical solutions obtained in Section 4.3 is a threshold solution,
see Definition 3.1. The maximal time of existence is discussed in Section 4.5.

4.2 Main theorems
In this chapter (αh,δ,uh,δ, ch,δ, ℓh,δ) is a discrete solution from Definition 3.2 unless specified
differently. Define the function ûh,δ on DT such that for every t ∈ (0,T ),

ûh,δ(t, ·) :=
{
uh,δ(t, ·) in (0, ℓh,δ(t)],
uh,δ(t, ℓh,δ(t)) in (ℓh,δ(t), ℓm). (4.1)

The function ûh,δ is the constant extension of uh,δ(t, ·) to (ℓh,δ(t), ℓm). Note that ûh,δ is
continuous on the contrary to uh,δ (see Figure 4.1). This continuity is necessary to ensure
the existence of a square integrable weak derivative.

||
ℓm

u
h
,δ
(t
,·
)

ℓh,δ(t, ·)

(a) uh,δ(t, ·).

ℓmℓh,δ(t, ·)

û
h
,δ
(t
,·
)

||

uh,δ(t, ℓh,δ(t))

(b) ûh,δ(t, ·).

Figure 4.1: The left–hand side plot illustrates the discontinuous function uh,δ and the
right–hand side plot illustrates the continuous modification ûh,δ.

The notation Πh,δch,δ denotes the mass lumping operator Πh applied to ch,δ(t, ·) for each
t ∈ (0,T ). Define the Hilbert spaces:

L2
c(0,T ;H1(0, ℓm)) := {f ∈ L2(0,T ;H1(0, ℓm)) : f(t, ℓ(t)) = 0 for a.e. t ∈ (0,T )},

L2
u(0,T ;H1(0, ℓm)) := {f ∈ L2(0,T ;H1(0, ℓm)) : f(t,0) = 0 for a.e. t ∈ (0,T )}.

The main results of this chapter are stated in Theorem 4.2 and 4.3. Let ûh,δ be defined
by (4.1).
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Remark 4.1 (Courant–Friedrichs–Lewy condition). Theorems 4.2 depends on a Courant–
Friedrichs–Lewy (CFL) condition (4.2) that restricts the possible choices of the spatial and
temporal discretisation factors h and δ. This condition imparts stability to the finite volume
scheme that discretises the hyperbolic conservation law (3.1a). The restriction on temporal
discretisation factor due to (4.2) renders the schemes expensive. However, the condition is
necessary and a characteristic feature of every explicit scheme [108].

Theorem 4.2 (Compactness). Let the properties stated below be true.

• The initial volume fraction α0 belongs to BV (0, ℓm) and satisfies

0<m01 ≤ α0 ≤m02 < 1 on Ω̂(0)

• The discretisation parameters h and δ satisfy the following conditions:

ρCCFL ≤
δ

h
≤ CCFL :=

√
a∗µ

2ℓm

|1−a∗|2

|a∗−αR|
and δ < min

(1−ρ

s2
,

2(1−ρ)
1+s2

)
, (4.2)

where ρ, a∗ and a∗ are constants chosen such that ρ < 1, 0<a∗ <m01, and m02 <a
∗.

Then, there exists a finite time T∗ depending on the choice of ρ, a∗, and a∗, a sub-
sequence (denoted by the same indices as of the sequence) of the family of functions
{(αh,δ, ûh,δ, ch,δ, ℓh,δ)}h,δ, and a 4-tuple of functions (α, û, c, ℓ) such that, setting DT∗ =
(0,T∗)× (0, ℓm), it holds

α ∈BV (DT∗), c ∈ L2(0,T∗;H1(0, ℓm)), û ∈ L2
u(0,T∗;H1(0, ℓm)), ℓ ∈BV (0,T∗),

and as h, δ→ 0,

• αh,δ→ α almost everywhere and in L∞-weak⋆ on DT∗,
• Πh,δch,δ→ c strongly in L2(DT∗) and ∂xch,δ ⇀∂xc weakly in L2(DT∗),
• ûh,δ ⇀ û and ∂xûh,δ ⇀∂xû weakly in L2(DT∗), and
• ℓh,δ→ ℓ almost everywhere in (0,T∗).

The next theorem asserts that the functions (α,u,c,Ω) is a threshold solution, see Defini-
tion 3.1, introduced in Chapter 3.

Theorem 4.3 (Identification of the limit and convergence). Let (α, û, c, ℓ) be the limit,
in the sense of Theorem 4.2, of any subsequence of the numerical approximations
(αh,δ, ûh,δ, ch,δ, ℓh,δ) . Define Ω(t) := (0, ℓ(t)) and the threshold domain Dthr

T∗ := {(t,x) :
x < ℓ(t), t ∈ (0,T∗)}, and let u := û on Dthr

T∗ and u := 0 on DT∗ \Dthr
T∗ . Then, (α,u,c,Ω) is

a threshold solution in the sense of Definition 3.1 with T = T∗.

Remark 4.4 (Convergence up to a subsequence). In the rest of the chapter, unless other-
wise specified, “convergence” of sequences is to be understood up to a subsequence. Hence “a
sequence (an)n converges to a limit a” means that there exists a subsequence (akn)n ⊆ (an)n

such that (akn)n converges to a. This concept is classical when analysing the convergence of
numerical approximations of non–linear equations, see, e.g., [58, Section 4.5], [109, Section
5.2] or [98, Chap. 5, 6].

64



Remark 4.5 (Existence of a solution). Existence of a threshold solution is ensured by
Theorems 4.2 and 4.3. Theorem 4.3 also shows that if convergence is observed in a numer-
ical simulation, then the limit is necessarily a solution to the threshold model. Finally, as
usual in convergence by compactness arguments, if the solution to this model is proved to
be unique then the entire sequence of approximations (not just a subsequence) converges to
that solution.

4.3 Proof of Theorem 4.2
The proof of Theorem 4.2 involves several steps, which are described here. In subsec-
tion 4.3.1, we prove the following:

– existence and uniqueness of the discrete solutions αh,δ, uh,δ, and ch,δ to the discrete
scheme in Definition 3.2,

– boundedness of uh,δ in various norms,
– positivity, boundedness, and bounded variation property of αh,δ, and
– positivity and boundedness of ch,δ.

In subsection 4.3.2, we show that the families of functions {αh,δ}h,δ, {uh,δ}h,δ, {ch,δ}h,δ,
and {ℓh,δ}h,δ are relatively compact in appropriate spaces.

4.3.1 Existence, uniqueness, and boundedness of the iterates
The proof of existence and uniqueness of the discrete solutions αh,δ, uh,δ, and ch,δ involves
many interrelated results. For clarity, we provide a sketch of the steps involved.

Fix two constants a∗ ∈ (max(αR,m02),1) and a∗ ∈ (0,min(m01,αthr)). We establish
the existence of a time T∗ (explicitly determined in the analysis), which depends in partic-
ular on a∗ and a∗, such that the following theorem holds.

Theorem 4.6. For all n ∈ N such that tn ≤ T∗, αh,δ(tn, ·) and ch,δ(tn, ·) are well defined.
Also, it holds a∗ < αh,δ(tn, ·)|Ωn

h
< a∗ and 0≤ ch,δ(tn, ·)|(0,ℓm) ≤ 1.

The proof of Theorem 4.6 is done in several steps by strong induction on n ∈ N.
The base case obviously holds, for any choice of a∗ and a∗ as above. Let n ∈ N be such
that tn+1 ≤ T∗, and assume that Theorem 4.6 holds for the indices 0, . . . ,n. The steps
(IS.1)–(IS.4) below show that Theorem 4.6 holds for αh,δ(tn+1, ·) and ch,δ(tn+1, ·).

In the sequel, C is a generic constant that depends on T, ℓm, ℓ, α
R, a∗,a∗ and the

model parameters, as explicitly defined in (4.5a)–(4.5c).

(IS.1) We establish that there exists a unique solution ũn
h for the variational problem (3.6)

and derive energy estimates.

(IS.2) Bounded variation and L∞ estimates on αh,δuh,δ: We show that
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(a) ||µαh,δ(tn, ·)∂xuh,δ(tn, ·)−αh,δ(tn, ·)H (αh,δ(tn, ·))||BV (0,ℓm) ≤ C ,

(b) ||(µαh,δ(tn, ·)∂xuh,δ(tn, ·))−||L∞(0,ℓm) ≤ C , and
(c) ||µαh,δ(tn, ·)∂xuh,δ(tn, ·)||L∞(0,ℓm) ≤ C ,

where H (α) = (α−αR)+/(1−α)2.

(IS.3) L∞ estimates on αh,δ: It holds a∗ < αh,δ(tn+1, ·)|Ωn+1
h

< a∗.

(IS.4) We show that there exists a unique solution c̃h,δ(tn+1, ·) to (3.8) and that 0 ≤
c̃h,δ(tn+1, ·)|(0,ℓm) ≤ 1.

The steps (IS.1)–(IS.4) are now performed in Lemmas 4.7, 4.9, 4.12 and Proposition 4.10,
respectively. The time T∗ is explicitly obtained in the proof of Proposition 4.10.

Lemma 4.7 (Step (IS.1)). There exists a unique solution ũn
h to (3.6) and it satisfies the

following estimates:

∣∣∣∣∣∣∣∣√αh,δ(tn, ·)∂xũ
n
h

∣∣∣∣∣∣∣∣
0,Ωn

h

+

∣∣∣∣∣∣
∣∣∣∣∣∣
√
αh,δ(tn, ·)ũn

h√
1−αh,δ(tn, ·)

∣∣∣∣∣∣
∣∣∣∣∣∣
0,Ωn

h

≤
(

1+ 1√
k

)√
ℓm
µ

|a∗−αR|
|1−a∗|2

. (4.3)

Proof. Coercivity and continuity of the bilinear form an
h and continuity of the linear form Ln

h
are clear from 0< a∗ ≤ αh,δ(tn, ·)≤ a∗ < 1. An application of the Lax–Milgram lemma [97,
p. 297] establishes the existence of a unique discrete solution to (3.6). A choice of vn

h = ũn
h

in (3.6), the fact that 0< αh,δ(tn, ·)< 1, and Cauchy–Schwarz inequality in (3.7) yield the
intermediate estimate

µ
∣∣∣∣∣∣∣∣√αh,δ(tn, ·)∂xũ

n
h

∣∣∣∣∣∣∣∣2
0,Ωn

h

+ k

∣∣∣∣∣∣
∣∣∣∣∣∣
√
αh,δ(tn, ·)ũn

h√
1−αh,δ(tn, ·)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

0,Ωn
h

≤
√
ℓm
|a∗−αR|
|1−a∗|2

∣∣∣∣∣∣∣∣√αh,δ(tn, ·)∂xũ
n
h

∣∣∣∣∣∣∣∣
0,Ωn

h

,

which proves (4.3).

Remark 4.8 (L∞ estimate on velocity). Since αh,δ(tn, ·) ≥ a∗, the intermediate estimate
yields an upper bound on ||∂xũ

n
h||0,Ωn

h
, which after an application of the boundary condition

ũn
h(0) = 0 and a use of Cauchy–Schwarz inequality yields

||uh,δ(tn, ·)||L∞(0,ℓm) ≤
ℓm√
a∗µ

|a∗−αR|
|1−a∗|2

. (4.4)
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Lemma 4.9 (Step (IS.2)). It holds that

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)−αh,δ(tn, ·)H (αh,δ(tn, ·))||BV (0,ℓm) ≤ ℓm
√
k

µ

|a∗−αR|
|1−a∗|5/2 , (4.5a)

||(µαh,δ(tn, ·)∂xuh,δ(tn, ·))−||L∞(0,ℓm) ≤ ℓm
√
k

µ

|a∗−αR|
|1−a∗|5/2 , and (4.5b)

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)||L∞(0,ℓm) ≤ ℓm
√
k

µ

|a∗−αR|
|1−a∗|5/2 + a∗(a∗−αR)

(1−a∗)2 . (4.5c)

Proof. Consider the Lagrange P1 nodal basis functions {φn
h,j}{1≤j≤Jn} of Sn

0,h, and choose
vn

h = φn
h,j in (3.6) for j ∈ {1, . . . ,Jn−1}, where Jn = ℓnh/h, to obtain

µ
(
αn

j−1∂xũ
n
h|Xj−1

−αn
j ∂xũ

n
h|Xj

)
−
(
αn

j H (αn
j )−αn

j−1H (αn
j−1)

)
=−k

� xj+1

xj−1

αh,δ(tn, ·)
1−αh,δ(tn, ·)

ũn
hφ

n
h,j dx. (4.6a)

Choose vn
h = φn

h,Jn
in (3.6) to obtain

µαn
j ∂xũ

n
h|XJn−1

−αn
Jn−1H (αn

Jn−1) =−k
� xJn

xJn−1

αh,δ(tn, ·)
1−αh,δ(tn, ·)

ũn
hφ

n
h,Jn

dx. (4.6b)

Recall that un
h = ũn

h on (0, ℓnh), and that un
h = 0 = H (αn

j ) outside this interval. Then, for
any j ∈ {1, . . . ,J−1}, (4.6a) and (4.6b) imply

µ
(
αn

j−1∂xu
n
h|Xj−1

−αn
j ∂xu

n
h|Xj

)
−
(
αn

j H (αn
j )−αn

j−1H (αn
j−1)

)
=−k

� xj+1

xj−1

αh,δ(tn, ·)
1−αh,δ(tn, ·)

un
hφ

n
h,j dx,

where φn
h,j = 0 if j ≥ Jn +1. Then, taking the absolute value, summing over j = 1, . . . ,J−1,

applying Cauchy–Schwarz inequality, (4.3), and the observation that 0≤ φn
h,j−1 +φn

h,j ≤ 1
everywhere leads to (4.5a). As a consequence, since αh,δ(tn, ·)(µ∂xuh,δ(tn, ·)−H (αh,δ(tn, ·)))
vanishes at x= ℓm,

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)−αh,δ(tn, ·)H (αh,δ(tn, ·))||L∞(0,ℓm) ≤ ℓm
√
k

µ

|a∗−αR|
|1−a∗|5/2 .

Since 0 ≤ αh,δ(tn, ·)H (αh,δ(tn, ·)) ≤ a∗(a∗−αR)/(1− a∗)2, the bounds (4.5b) and (4.5c)
follow.

The positivity and boundedness of αh,δ(tn+1, ·) are shown next. The next proposition
establishes the existence of a finite time T∗ such that the strong induction assumption holds
in [0,T∗).
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Proposition 4.10 (Step (IS.3)). There exists T∗ > 0 such that if n+1≤N∗ := T∗/δ, then

a∗ ≤ min
j :xj∈Ωn+1

h

αn+1
j ≤ max

0≤j≤J−1
αn+1

j ≤ a∗.

Proof. Substitute un+
j+1 = un

j+1 +un−
j+1 and un−

j = un+
j −un

j in (3.5) (written for n+1 instead
of n) to obtain

αn+1
j + δ(αn+1

j −αthr)+dn
j = αn

j + δ(αn
j −αthr)+(1−αn

j )bnj −
δ

h
αn

j

(
un

j+1−un
j

)
+ δ

h

(
un−

j+1(αn
j+1−αn

j )+un+
j (αn

j−1−αn
j )
)
. (4.7)

Define the linear combination

L (αn
j−1,α

n
j ,α

n
j+1) := δ

h
un+

j αn
j−1 +

(
1− δ

h
un−

j+1−
δ

h
un+

j

)
αn

j + δ

h
un−

j+1α
n
j+1. (4.8)

The conditions (4.2) and (4.4) show that all the coefficients in (4.8) are positive, and thus
this linear combination is convex. Moreover, (4.7) can be recast as

αn+1
j + δ(αn+1

j −αthr)+dn
j = L (αn

j−1,α
n
j ,α

n
j+1)+ δ(αn

j −αthr)+(1−αn
j )bnj

− δαn
j ∂xu

n
h|Xj

. (4.9)

Since 0 ≤ cnh ≤ 1 (this is the induction hypothesis (IS.4) at step n), we have 0 ≤ dn
j ≤ s2

and bnj ≥ 0. Then, a use of (4.5c) and the positivity of 1−αn
j in (4.9) yield

αn+1
j (1+ δs2)≥min(αn

j−1, α
n
j , α

n
j+1)− δFmin, (4.10)

where
Fmin = ℓm

√
k

µ3/2
|a∗−αR|
|1−a∗|5/2 + 1

µ

a∗(a∗−αR)
(1−a∗)2 .

Step (DS.b) implies that αn
j−1,α

n
j ,α

n
j+1 < αthr for j ≥ Jn + 1. This fact along with an

observation that un
h = 0 in (0, ℓm)\Ωn

h ensures that the right hand side of (4.9) is strictly
bounded above by αthr (the linear combination remains, and the other terms vanish); hence
αn+1

j < αthr, for all j ≥ Jn+1. Thus the domain Ωn+1
h is either a subset of Ωn

h or equal to
Ωn

h ∪XJn . These two cases are considered separately.

Case 1 (Ωn+1
h ⊆ Ωn

h: tumour does not grow in the (n+ 1)th level). If Ωn+1
h = Ωn

h, the last
value αn+1

Jn+1−1 depends on αn
Jn−2, αn

Jn−1, and αn
Jn

(see Figure 4.2(a)). The domain selection
procedure (DS.b) shows αn+1

Jn+1−1≥αthr. All other values αn+1
j depend on αn

k with k≤ Jn−1,
which are values inside Ωn

h. Therefore, for all j ≤ Jn+1−1, by (4.10)

αn+1
j (1+ δs2)≥min

{(
min

k :xk∈Ωn
h

αn
k

)
,αthr

}
− δFmin. (4.11)

The same argument follows in the case Ωn+1
h ⊂ Ωn

h (see Figure 4.2(b)).
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j

|

|b
xJn+1

αn
Jn−3

(a) Ωn+1
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h : observe that in this case xJn+1 = xJn .
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j
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h ⊂ Ωn
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tn+1

αn+1
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xJn

a∗ < αn
j

αn
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|
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b

|

(c) Ωn+1
h = Ωn

h ∪XJn .

Figure 4.2: Dependency of αn+1
j on αn

j . Observe that in Figure 4.2(c) the direction of un
Jn

is rightwards, which eliminates the dependency of αn
Jn+1−2 on αn

Jn
.

Case 2 (Ωn+1
h = Ωn

h ∪XJn : tumour expands). By the domain selecting procedure (DS.b)
we have αn+1

Jn+1−1 ≥ αthr (see Figure 4.2(c)). This along with αn
Jn
< αthr and un

j = 0 for
j > Jn, implies that some volume fraction must flow from Ωn

h to XJn . Hence, un
Jn
> 0.

We note here that our usage of (α−αthr)+ in the source term is essential to ensure this
property, since the reaction term cannot yield the growth above αthr in XJn . Therefore,
since Jn+1− 2 = Jn− 1 in this case, choosing j = Jn− 1 in (4.9), the term involving αn

j+1
vanishes from L (αn

j−1,α
n
j ,α

n
j+1) (since it is multiplied by un−

Jn
) and we obtain

αn+1
Jn+1−2(1+ δs2)≥min(αn

Jn−2,α
n
Jn−1)− δFmin. (4.12)

The values αn+1
j with j ≤ Jn+1−3 can be dealt as in (4.11).

Combine (4.11) and (4.12) to obtain, for j ≤ Jn+1−1

αn+1
j (1+ δs2)≥min

{(
min

k :xk∈Ωn
h

αn
k

)
,αthr

}
− δFmin.

A use of (1+ δs2)−1 ≥ exp(−δs2) yields

min
j :xj∈Ωn+1

h

αn+1
j ≥ exp(−δs2)min

{(
min

k :xk∈Ωn
h

αn
k

)
,αthr

}
− δ exp(−δs2)Fmin.
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This relation is obviously also true if the left–hand side is replaced by αthr, and therefore,

min
{(

min
j :xj∈Ωn+1

h

αn+1
j

)
,αthr

}
≥ exp(−δs2)min

{(
min

k :xk∈Ωn
h

αn
k

)
,αthr

}
− δ exp(−δs2)Fmin. (4.13)

Define
yn = exp(s2nδ)min

{(
min

k :xk∈Ωn
h

αn
k

)
,αthr

}
.

The estimate (4.13) shows that

yn+1 ≥ yn− δ exp(s2nδ)Fmin.

Write this relation for a generic k ≤ n, and sum over k = 0, . . . ,n to obtain

yn+1 ≥ y0−
n∑

n=0
δ exp(s2nδ)Fmin. (4.14)

The fact that the sum in (4.14) is the lower Riemann sum for the function exp(s2 τ) from
τ = 0 to τ = (n+1)δ yields

yn+1 ≥ y0−
(

exp(s2(n+1)δ)−1
s2

)
Fmin.

Since y0 = αthr, a selection of time tn+1 = (n+1)δ such that

tn+1 ≤ Tm := 1
s2

ln
(Fmin + s2αthr
Fmin +a∗s2

)
(4.15)

yields yn+1 ≥ a∗ exp(s2tn+1), and this leads to min{αn+1
j : xj ∈ Ωn+1

h } ≥ a∗. To obtain an
upper bound, note that (4.9) yields

αn+1
j ≤ max

0≤k≤J−1
αn

k + δ(1−αthr)+ δ

µ
||(µαh,δ(tn, ·)∂xu

n
h)−||L∞(0,ℓm) (4.16)

for every 0≤ j ≤ J−1. Define the parameter

Fmax = 1−αthr + ℓm
√
k

a∗µ3/2
|a∗−αR|
|1−a∗|5/2 . (4.17)

Then, (4.16) and (4.5b) imply

max
0≤j≤J−1

αn+1
j ≤ max

0≤j≤J−1
αn

j + δFmax.
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Write this relation for a generic k ≤ n and sum over k = 0, . . . ,n to obtain

max
0≤j≤J−1

αn+1
j ≤ max

0≤j≤J−1
α0

j +(n+1)δFmax ≤m02 + tn+1Fmax.

Selection of the time tn+1 such that

tn+1 ≤
a∗−m02
Fmax

:= TM (4.18)

implies max0≤j≤J−1α
n+1
j ≤ a∗. Finally to ensure that the extended domain (0, ℓm) contains

the time–dependent domains (0, ℓ(t)) for every t ∈ [0,T∗] we impose a restriction on T∗.
Since the domain size increases at most by h at each time step, and there are T∗/δ such
time steps, we set T∗ < Tℓ := ρCCFL(ℓm− ℓ0) ≤ δ

h(ℓm− ℓ0). Choose T ∗ = min(Tm,TM ,Tℓ)
to conclude the proof.

Remark 4.11. The norm || • ||0,Ωn
h

in the space Sn
h is equivalent to the norm ||Πh•||0,Ωn

h
.

In fact, we have for all w ∈ Sn
h , (1/

√
3)||Πhw||0,Ωn

h
≤ ||w||0,Ωn

h
≤ ||Πhw||0,Ωn

h
. This is an easy

consequence of estimating ||w||0,Ωn
h

by Simpson’s quadrature rule, which is exact for second
degree polynomials.

Lemma 4.12 (Step (IS.4)). The equation (3.8) has a unique solution c̃n+1
h , and it holds

0≤ cn+1
h ≤ 1 for δ sufficiently small.

Proof. Recall that xJn+1 = ℓn+1
h , and for r = n, n+1, define the vector

cccrh := [crh(x0), cr
h(x1), . . . , cr

h(xJn+1−1)].

The vector cccn+1
h contains the discrete unknowns at tn+1. Note that we do not need to

compute the nodal value cccn+1
h (xJn+1) at the discrete level since Dirichlet boundary condition

holds at xJn+1 . The matrix equation corresponding to (3.8) is

(M + δλD+QδS)cn+1
h =Mcn

h− δbh,

where bh is the Jn+1×1 vector with entries bh,i = 0 for 0≤ i≤ Jn+1−2 and bh,Jn+1−1 =
−λ/h. Here, M is the Jn+1×Jn+1 positive, diagonal, lumped mass matrix. The matrix
D is the stiffness matrix with all off–diagonal entries negative. The entries of the positive,
diagonal, lumped mass matrix S are as follows:

Sii =
∑

Xj⊂supp(φi,h)

hαn
j

2

⟨
(Πhφi,h)2

1+ Q̂1
∣∣∣Πhc

n
h

∣∣∣
⟩

Xj

, 0≤ i≤ Jn+1−1,

where {φi,h}{0≤i≤Jn+1−1} is the canonical nodal basis of Sn+1
h,0 . The symbol ⟨f⟩Xj

denotes
the average of f over the cell Xj . An application of Lemma III(c) shows that the discrete
operator ϵh,δ := (IJn+1 + δM−1(λD+QS))−1 is positive. A use of the facts αh,δ(tn+1, ·) >
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0, cn
h ≥ 0, and bh ≤ 0 yield cn+1

h ≥ 0. Next, we obtain the upper bound for cccn+1
h . For

r = n, n+1, define

ĉr
h := [crh(x0)−1, cr

h(x1)−1, . . . , cr
h(xJn+1−1)−1].

It is easy to observe that (M + δλD+QδS)ĉn+1
h = M ĉn

h− δb̂h, where b̂h is the vector of
nonnegative entries

b̂h,i =
∑

Xj⊂supp(φi,h)

Qαn
j h

2

⟨
Πhφi,h

1+ Q̂|Πn
hc

n
h|

⟩
Xj

, 0≤ j ≤ Jn+1−1.

Then, the same reasoning is used to obtain the positivity and Lemma III(c) imply ĉccn+1
h ≥ 0

and cn+1
h −1≤ 0.

4.3.2 Compactness results
The next goal is to establish necessary compactness properties for the iterates, which en-
ables us to extract a convergent subsequence of discrete solutions, whose limit is a threshold
solution. We list the main steps involved in this section. We establish

(CR.1) a uniform L2(0,T∗;H1(0, ℓm)) estimate for the family {ch,δ}h,δ.
(CR.2) a uniform spatial BV estimate for the family {αh,δ}h,δ.
(CR.3) a uniform temporal BV estimate for the family {αh,δ}h,δ.
(CR.4) a uniform L2(0,T∗;H1(0, ℓm)) estimate for the family {ûh,δ}h,δ.
(CR.5) a uniform BV estimate for the family {ℓh,δ}h,δ.
(CR.6) that the family {Πh,δch,δ}h,δ is relatively compact in L2(DT∗).
(CR.7) Theorem 4.2 with the help of (CR.1)–(CR.6)

In this sequel, C1 denotes a generic constant that depends α0, c0, a∗, a∗, ℓm, T∗, and
the model parameters. Let us start with a preliminary lemma, the proof of which is an
easy consequence of local Taylor expansions.

Lemma 4.13. [98, Section 8.4] For any w ∈H1(0, ℓm), the following estimates hold:

||w−Πhwh||0,(0,ℓm) ≤
h

2
||∂xw||0,(0,ℓm) and (4.19)

||Πhwh||0,(0,ℓm) ≤
h

2
||∂xw||0,(0,ℓm) + ||w||0,(0,ℓm). (4.20)

We now prove an L2(0,T∗;H1(0, ℓm)) stability estimate for ch,δ.

Proposition 4.14 (Step (CR.1)). It holds ||ch,δ||L2(0,T∗;H1(0,ℓm)) ≤ C1.
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Proof. Define the continuous function ĉnh on (0, ℓm) by ĉnh := c̃nh− 1 in Ωn
h, and ĉnh := 0 on

(0, ℓm)\Ωn
h. An application of Cauchy–Schwarz inequality and (1.1b) yields

2(Πhĉ
n−1
h ,Πhĉ

n
h)Ωn

h
≤ ||Πhĉ

n−1
h ||20,Ωn

h
+ ||Πhĉ

n
h||20,Ωn

h
. (4.21)

If ℓnh ≤ ℓ
n−1
h , then ||Πhĉ

n−1
h ||20,Ωn

h
≤ ||Πhĉ

n−1
h ||20,Ωn−1

h

since Ωn
h ⊆Ωn−1

h . If ℓnh = ℓn−1
h +h, then

Πhĉ
n−1
h = 0 on Ωn

h \Ωn−1
h , and ||Πhĉ

n−1
h ||20,Ωn

h
= ||Πhĉ

n−1
h ||20,Ωn−1

h

. Hence by (4.21) in any
case

2(Πhĉ
n−1
h ,Πĉnh)Ωn

h
≤ ||Πhĉ

n−1
h ||20,Ωn−1

h
+ ||Πhĉ

n
h||20,Ωn

h
. (4.22)

Choose vn
h = ĉnh ∈ Sn

h,0 as the test function in (3.8) with a Dirichlet lift of −1, and use (4.22)
and the observation that, since ĉnh ≤ 0 and αn

h ≥ 0, − Qαn
hΠhĉn

h

1+Q̂1|Πhcn−1
h | ≤ −Qα

n
hΠhĉ

n
h, to obtain

1
2
||Πhĉ

n
h||20,Ωn

h
− 1

2
||Πhĉ

n−1
h ||20,Ωn−1

h
+ δλ||∂xĉ

n
h||20,Ωn

h
≤−Qδ(αn

h,Πhĉ
n
h)Ωn

h
.

A use of Young’s and Poincaré’s inequalities together with (4.20) and a summation on the
index n yield

1
2
||Πhĉ

n
h||20,Ωn

h
+ λδ

2

n∑
r=0
||∂xĉ

r
h||20,Ωr

h
≤ C1. (4.23)

Since ∂xĉ
r
h = ∂xc

r
h on Ωr

h and ∂xc
r
h = 0 outside this set, (4.23) yields a bound on ∂xch,δ in

L2(DT∗). We obtain the desired conclusion from the fact ch,δ(t, ℓm) = 1 for all t ∈ (0,T∗)
and a Poincaré inequality.

Proposition 4.14 is crucial in obtaining a bounded variation estimate for the piecewise
constant function αh,δ. The idea is then to use Helly’s selection theorem (see Theorem I)
to extract an almost everywhere convergent subsequence of functions out of the family of
functions {αh,δ}h,δ. Spatial and temporal BV estimates for αh,δ are derived separately in
Propositions 4.15 and 4.16 for this purpose.

Proposition 4.15 (Step (CR.2)). For t ∈ (0,T∗) it holds

||αh,δ(t, ·)||BV (0,ℓm) ≤ C1. (4.24)

Proof. Let j ∈ {1, . . . ,J − 1} and subtract (4.9) for αn+1
j−1 from (4.9) for αn+1

j . This yields
T0 = T1 + δT2− δT3, where

T0 = (αn+1
j −αn+1

j−1 )+ δ((αn+1
j −αthr)+dn

j − (αn+1
j−1 −αthr)+dn

j−1),

T1 = L
(
αn

j−1,α
n
j ,α

n
j+1

)
−L

(
αn

j−2,α
n
j−1,α

n
j

)
,

T2 = (αn
j −αthr)+(1−αn

j )bnj − (αn
j−1−αthr)+(1−αn

j−1)bnj−1, and
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T3 = αn
j ∂xu

n
h|X j−α

n
j−1∂xu

n
h|Xj−1

.

The terms in T1 can be grouped in the following way:

T1 = (αn
j −αn

j−1)
(

1− δ

h
un−

j −
δ

h
un+

j

)
+ δ

h
un−

j+1(αn
j+1−αn

j )

+ δ

h
un+

j−1(αn
j−1−αn

j−2). (4.25a)

Split the terms in T0 and T2 using (1.1a) in Section 1.4.2 to obtain

T0 = (αn+1
j −αn+1

j−1 )+ δ((αn+1
j −αthr)+− (αn+1

j−1 −αthr)+)
dn

j +dn
j−1

2

+ δ((αn+1
j −αthr)+ +(αn+1

j−1 −αthr)+)
dn

j −dn
j−1

2
, and (4.25b)

T2 = ((αn
j −αthr)+(1−αn

j )+(αn
j−1−αthr)+(1−αn

j−1))
bnj − bnj−1

2

+((αn
j −αthr)+− (αn

j−1−αthr)+)(2−αn
j −αn

j−1)
bnj + bnj−1

4

+((αn
j −αthr)+ +(αn

j−1−αthr)+)(αn
j−1−αn

j )
bnj + bnj−1

4
. (4.25c)

Substitute (4.25a), (4.25b), and (4.25c) in T0 = T1 +δT2−δT3, use the facts that 0≤ bnj ≤ 1,
0 ≤ dn

j ≤ s2, 0 ≤ αn
j ≤ 1, the CFL condition (4.2) together with the bound (4.4) on the

velocity, the Lipschitz continuity of x 7→ (x−αthr)+, and group the terms appropriately to
obtain

(1− δs2)|αn+1
j −αn+1

j−1 | ≤ |α
n
j −αn

j−1|
(

1− δ

h
un−

j −
δ

h
un+

j

)
+ δ

h
un−

j+1|α
n
j+1−αn

j |

+ δ

h
un+

j−1|α
n
j−2−αn

j−1|+ δ|dn
j −dn

j−1|+ δ|bnj − bnj−1|

+2δ|αn
j −αn

j−1|+ δ|αn
j ∂xu

n
h|Xj
−αn

j−1∂xu
n
h|Xj−1

|. (4.26)

Sum the expression (4.26) from j = 1 to j = J , and utilize un
0 = 0, un

J = 0, un
J+1 = 0 and

0≤ (δ/h)|αn
1 −αn

0 |un−1
0 to obtain

(1− δs2)
J∑

j=1
|αn+1

j −αn+1
j−1 | ≤ (1+2δ)

J∑
j=1
|αn

j −αn
j−1|+ δ

J∑
j=1
|dn

j −dn
j−1|

+ δ
J∑

j=1
|bnj − bnj−1|+ δ

J∑
j=1
|αn

j ∂xu
n
h|Xj
−αn

j−1∂xu
n
h|Xj−1

|. (4.27)

Further note that

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)||BV (0,ℓm) ≤ ||µαh,δ(tn, ·)∂xuh,δ(tn, ·)−αh,δ(tn, ·)H (αh,δ(tn, ·))||BV (0,ℓm)
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+ ||αh,δ(tn, ·)H (αh,δ(tn, ·))||BV (0,ℓm).

A use of (4.5a) and the fact that H is continuous and piecewise differentiable yield

||µαh,δ(tn, ·)∂xuh,δ(tn, ·)||BV (0,ℓm) ≤ C1(1+ ||αh,δ(tn, ·)||BV (0,ℓm)). (4.28)

The CFL condition (4.2) yields 1− δs2 ≥ ρ. Moreover, there exists an η > 0 such that, for
all admissible δ, (1+2δ)/(1− s2δ)≤ 1+ηδ. Hence (4.27) and (4.28) imply

||αh,δ(tn+1, ·)||BV (0,ℓm) ≤ (1+ηδ)||αh,δ(tn, ·)||BV (0,ℓm) + δC1(ρµ)−1

+ρ−1δ(||dh,δ(tn, ·)||BV (0,ℓm) + ||bh,δ(tn, ·)||BV (0,ℓm)).

Induction on the right hand side of the above expression yields

||αh,δ(tn+1, ·)||BV (0,ℓm) ≤ exp(T∗η)(||αh,δ(0, ·)||BV (0,ℓm) +C1(ρµ)−1T∗)

+ρ−1 exp(T∗η)
� T∗

0

(
|bh,δ(t, ·)|BV (0,ℓm) + |dh,δ(t, ·)|BV (0,ℓm)

)
dt,

and since dh,δ and bh,δ are smooth functions of ch,δ (see (DS.d) in Definition 3.2), the
estimates for ch,δ from Proposition 4.14 conclude the proof.

Proposition 4.16 (Step (CR.3)). The function αh,δ satisfies the upper bound
� ℓm

0
||αh,δ(·,x)||BV (0,T∗) dx≤ C1.

Proof. Rearrange the terms (4.7) and appropriately group using (1.1a) to obtain

αn+1
j −αn

j = δ(αn
j −αthr)+(1−αn

j )bnj − δ(αn+1
j −αthr)+dn

j + δ

h
un−

j+1(αn
j+1−αn

j )

+ δ

h
un+

j (αn
j−1−αn

j )− δ

h
αn

j (un
j+1−un

j )

= δ((αn
j −αthr)+ +(αn+1

j −αthr)+)
(1−αn

j )bnj −dn
j

2

+ δ((αn
j −αthr)+− (αn+1

j −αthr)+)
(1−αn

j )bnj +dn
j

2
+ δ

h
un−

j+1(αn
j+1−αn

j )+ δ

h
un+

j (αn
j−1−αn

j )− δ

h
αn

j (un
j+1−un

j ).

Use the facts that 0 ≤ bnj ≤ 1, 0 ≤ dn
j ≤ s2, 0 ≤ αn

j ≤ 1, x 7→ (x−αthr)+ is a Lipschitz
function with Lipschitz constant one, and group the terms appropriately to obtain, for
j = 1, . . . ,J−1

|αn+1
j −αn

j | ≤ δ
(

1+ s2 + |αn
j −αn+1

j |1+ s2
2

)
+ δ

h
||uh,δ||L∞(DT∗)|αn

j+1−αn
j |
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+ δ

h
||uh,δ||L∞(DT∗)|αn

j−1−αn
j |+ δ||αh,δ∂xuh,δ||L∞(DT∗). (4.29)

Since un
0 = 0, for j = 0 an analogous estimate holds with αn

−1 := αn
0 . Multiply (4.29) by h

and sum over j = 0, . . . ,J−1 and n= 0, . . . ,N∗−1 with N∗ = T∗/δ to obtain
(

1− δ (1+ s2)
2

)
J−1∑
j=0

h
N∗−1∑
n=0
|αn+1

j −αn
j | ≤ T∗ℓm(1+ s2 + ||αh,δ∂xuh,δ||L∞(DT∗))

+2||uh,δ||L∞(DT∗)

N∗−1∑
n=0

δ
J−1∑
j=0
|αn

j+1−αn
j |.

A use of the estimates (4.4), (4.5c), (4.24), and (4.2) concludes the proof.

The next result is a direct consequence of Lemma 4.7, Proposition 4.10 and (4.4).

Proposition 4.17 (Step (CR.4)). The family of functions {ûh,δ}h,δ is uniformly bounded
in L2(0,T∗;H1(0, ℓm)).

Next, we need to obtain an estimate on the total variation of ℓh,δ. From Proposi-
tion 4.10 it is evident that at each time step, ℓh,δ can either increase by h or decrease by any
value. We show that ℓh,δ can be expressed as sum of a decreasing function and a function
bounded variation as discussed in the next proposition.

Proposition 4.18 (Step (CR.5)). The piecewise constant function ℓh,δ : [0,T∗]→ R is of
the form ℓh,δ = ℓh,δ,BV +ℓh,δ,D, where ℓh,δ,BV is a function with uniformly bounded variation
in (0,T∗) and ℓh,δ,D is a monotonically decreasing function. Consequently,

N∗∑
n=1
|ℓnh− ℓn−1

h | ≤ C1. (4.30)

Proof. Define ℓh,δ,BV (t) = (ρCCFL)−1t and ℓh,δ,D(t) = ℓh,δ(t)− (ρCCFL)−1t where ρ and
CCFL are defined in (4.2). Clearly, the function ℓh,δ,BV has a uniformly bounded variation.
For the function ℓh,δ,D note that

ℓh,δ,D(tn+1)− ℓh,δ,D(tn) = ℓn+1
h − ℓnh− (ρCCFL)−1δ.

If ℓn+1
h −ℓnh = h, then by (4.2), ℓn+1

h −ℓnh ≤ (ρCCFL)−1δ and thus ℓh,δ,D(tn+1)≤ ℓh,δ,D(tn). If
ℓn+1
h ≤ ℓnh, then ℓh,δ,D(tn+1)≤ ℓh,δ,D(tn), trivially. Since ℓh,δ,D is decreasing and uniformly

bounded, the bounded variation estimate (4.30) follows.

The compactness results for the function ch,δ are proved next. Note that Proposi-
tion 4.14 already guarantees that ch,δ ∈L2(0,T∗;H1(0, ℓm)), and the Hilbert space structure
of this space allows us to extract a weakly convergent subsequence. However, (3.5) has non
linear rational terms bh,δ and dh,δ that involve Πh,δch,δ. Hence, the weak convergence of
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Πh,δch,δ is not sufficient to prove that the limit of Πh,δch,δ is a weak solution. Instead,
strong L2(DT∗) convergence is required. A standard method to achieve the strong L2(DT∗)
convergence for Πh,δch,δ is to use a discrete Aubin–Simon theorem (see Theorem II in
Section 1.4).

We state the definition of a compactly and continuously embedded sequence of Banach
spaces next.

Definition 4.19 (Compactly–continuously embedded sequence). [98, Definition C.6].
Let B be a Banach space. Let families of Banach spaces {Xh, || · ||Xh

}h and {Yh, || · ||Yh
}h

be such that Xh ⊂ Yh ⊂ B. We say that the family {(Xh,Yh)}h is compactly–continuously
embedded in B if the following conditions hold.

• Any sequence {uh}h such that uh ∈Xh and {||uh||Xh
}h uniformly bounded is relatively

compact in B.
• Any sequence {uh}h such that uh ∈ Xh, {||uh||Xh

}h uniformly bounded, {uh}h con-
verges in B, and ||uh||Yh

→ 0, converges to zero in B.

Define Xh := Πh(H1(0, ℓm)) with norm

||u||Xh
:= inf

{
||w||1,(0,ℓm) : w ∈H1(0, ℓm),u= Πhw

}
. (4.31a)

Set Yh :=Xh with the discrete dual norm || · ||Yh
defined by: ∀u ∈ Yh,

||u||Yh
:= sup

{� ℓm

0
uΠhvdx : v ∈H1(0, ℓm), ||v||1,(0,ℓm) ≤ 1

}
. (4.31b)

Lemma 4.20. The family of Banach spaces {(Xh,Yh)} with Xh = Πh(H1(0, ℓm)) = Yh and
|| · ||Xh

and || · ||Yh
as defined in (4.31a) and (4.31b), respectively, is compactly–continuously

embedded in B = L2(0, ℓm).

Proof. We verify the conditions in Definition 4.19. Let {uh}h⊂B be a sequence of functions
such that uh ∈Xh and {||uh||Xh

}h is bounded. Consider the corresponding sequence {wh}⊂
H1(0, ℓm) such that uh = Πhwh and ||uh||Xh

= ||wh||1,(0,ℓm). The boundedness of {||uh||Xh
}h

shows that {||wh||1,(0,ℓm)} is also bounded. Since H1(0, ℓm) is compactly embedded in
L2(0, ℓm), there exists a subsequence {wh}h up to re–indexing such that wh ⇀w weakly in
H1(0, ℓm) and wh→ w strongly in L2(0, ℓm). We claim that uh→ w strongly in L2(0, ℓm).
To prove this, use the triangle inequality and then apply (4.19) and (4.20) to obtain

||uh−w||0,(0,ℓm) ≤ ||uh−Πhw||0,(0,ℓm) + ||Πhw−w||0,(0,ℓm)

≤ ||Πh(wh−w)||0,(0,ℓm) + ||Πhw−w||0,(0,ℓm)

≤ ||wh−w||0,(0,ℓm) +h||∂x(wh−w)||0,(0,ℓm). (4.32)

Since wh → w in L2(0, ℓm) while being bounded in H1(0, ℓm), (4.32) shows that ||uh−
w||0,(0,ℓm)→ 0 as h→ 0. This proves the first condition in Definition 4.19.
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Let {uh} ⊂ B be such that uh ∈Xh, {||uh||Xh
}h is bounded, ||uh||Yh

→ 0 as h→ 0,
and uh converges in B. Let wh ∈Xh be such that Πhwh = uh and ||wh||1,(0,ℓm) = ||uh||Xh

.
Then, note that

||uh||20,(0,ℓm) =
� ℓm

0
uh Πhwh dx≤ ||uh||Yh

||wh||1,(0,ℓm) ≤ ||uh||Yh
||uh||Xh

.

The assumed properties on {uh}h then show that uh→ 0 in L2(0, ℓm), which concludes the
proof.

To obtain the relative compactness of {Πh,δch,δ}h,δ in L2(DT∗), we start with an
auxiliary function φn

h,ϵ : [0, ℓm]→ [0,1] defined by, for a fixed ϵ > 0, (see Figure 4.3)

φn
h,ϵ(x) =


1 0≤ x≤ ℓnh− ϵ,

(ℓnh−x)/ϵ ℓnh− ϵ < x≤ ℓnh,
0 ℓnh < x≤ ℓm.

ℓmℓnhℓnh − ϵ

φn
h,ϵ

1

0 b

Figure 4.3: The auxiliary function φn
h,ϵ.

For ĉh,δ = ch,δ−1 the mass lumped function can be split into

Πh,δ ĉh,δ = Πh,δ(ĉh,δφh,ϵ)+Πh,δ(ĉh,δ(1−φh,ϵ)),

where φh,ϵ =φn
h,ϵ on Tn = (tn, tn+1) for 0≤n≤N∗−1. Consider the second term Πh,δ(ĉh,δ(1−

φh,ϵ)), which is equal to Πh (ĉnh(1−φn
h,ϵ)) on Tn. A use of the facts 1−φn

h,ϵ = 0 on [0, ℓnh−ϵ),
Πhĉ

n
h = 0 (see Figure 4.3) on (ℓnh, ℓm] and the property Πh(fg) = (Πhf)(Πhg) yield

||Πh (ĉnh(1−φn
h,ϵ))||20,(0,ℓm) =

� ℓn
h

ℓn
h−ϵ
|Πh (ĉnh(1−φn

h,ϵ))|2dx

≤ ϵ ||Πh (ĉnh(1−φn
h,ϵ))||2L∞(0,ℓm). (4.33)

Multiply (4.33) by δ, sum over n= 0, . . . ,N∗−1, and use the bounds ||Πh(1−φn
h,ϵ)||L∞(0,ℓm)≤

1 and ||Πhĉ
n
h||L∞(0,ℓm) ≤ 1 to obtain

||Πh,δ(ĉh,δ(1−φh,ϵ))||L2(DT∗) ≤
√
T∗ϵ. (4.34)
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Proposition 4.23 below establishes that the family of functions {Πh,δ(φh,ϵĉh,δ)}h,δ is rela-
tively compact in L2(DT∗). Then, Proposition 4.23 and (4.34) are used to prove Proposi-
tion 4.24.

Definition 4.21 (Discrete time derivative). The discrete time derivative of a function f
on DT∗ is defined as follows: on Tn,

Dn
h,δf := Πhf(tn+1, ·)−Πhf(tn, ·)

δ
. (4.35)

Definition 4.22 (Piecewise linear interpolant operator). The piecewise linear interpolant
operator Ih :H1(0, ℓm)→Sh is defined by

Ihf(x) = f(xj)
xj+1−x

h
+f(xj+1)x−xj

h
∀x ∈ Xj , j = 0, . . . ,J−1. (4.36)

We are now in a position to prove the relative compactness of {Πh,δ(φh,ϵĉh,δ)}h,δ in L2(DT∗),
which is required to prove Step (CR.5).

Proposition 4.23. The family of functions {Πh,δ(φh,ϵĉh,δ)}h,δ is relatively compact in
L2(DT∗).

Proof. The desired result follows from the discrete Aubin–Simon theorem (see Theorem II),
for which we need to verify the conditions (A.1)–(4.37b) with B =L2(0, ℓm) and Yh =Xh =
Πh(H1(0, ℓm)). The following conditions are verified for this:

{Πh,δ(φh,ϵĉh,δ)}h,δ is bounded in L2(0,T∗;B),
{||Πh,δ(φh,ϵĉh,δ)||L2(0,T∗;Xh)}h,δ is bounded, and (4.37a)
{||Dh,δ(φh,ϵĉh,δ)||L1(0,T∗;Yh)}h,δ is bounded. (4.37b)

Proposition 4.14 and the bound |φh,ϵ| ≤ 1 yields (A.1). We have |φh,ϵ| ≤ 1 and |∂xφh,ϵ| ≤ 1/ϵ,
so for all t ∈ (0,T∗),

|φh,ϵ(t, ·)ĉh,δ(t, ·)|1,(0,ℓm) ≤ |ĉh,δ(t, ·)|1,(0,ℓm) + ϵ−1|ĉh,δ(t, ·)|0,(0,ℓm).

The facts ||ĉnh||L∞(0,ℓm) ≤ 1 and ∂xφ
n
h,ϵ = 0 on [0, ℓnh− ϵ−h)∪ (ℓnh +h,ℓm) yield

|φn
h,ϵĉ

n
h|21,(0,ℓm) ≤ 2

� ℓm

0
|∂xĉ

n
h|2 dx+2

� ℓn
h+h

ℓn
h−ϵ−h

1
ϵ2
|ĉnh|2 dx

≤ 2|ĉnh|21,(0,ℓm) + 2(ϵ+2h)
ϵ2

,

and hence a use of (4.31a), Remark 4.11, and Proposition 4.14 leads to

||Πh,δ(φh,ϵĉh,δ)||L2(0,T∗;Xh) ≤ ||φh,ϵĉh,δ||L2(0,T∗;H1(0,ℓm)) ≤ C1 + 2T∗(ϵ+2h)
ϵ

,

79



which verifies (4.37a). To verify (4.37b), we start with the estimation of ||Dn−1
h,δ (φh,ϵĉh,δ)||Yh

.
Let vh ∈ H1(0, ℓm) with ||vh||1,(0,ℓm) ≤ 1. Note that (4.35) along with the identity (1.1b)
yields

Dn−1
h,δ (φh,ϵĉh,δ) = (Dn−1

h,δ ĉh,δ)Πhφ
n
h,ϵ +(Dn−1

h,δ φh,ϵ)Πhĉ
n−1
h ,

and hence
� ℓm

0
Dn−1

h,δ (φh,ϵĉh,δ)Πhvhdx=
� ℓm

0
(Dn−1

h,δ ĉh,δ)Πhφ
n
h,ϵΠhvhdx

+
� ℓm

0
(Dn−1

h,δ φh,ϵ)Πhĉ
n−1
h Πhvhdx=: T1 +T2.

To estimate T1, observe that φn
h,ϵ is zero on [ℓnh, ℓm]. Use the result (Πhf)(Πhg) = Πh(fg)

to obtain

T1 =
� ℓn

h

0
(Dh,δ ĉ

n−1
h )Πh(φn

h,ϵ vh)dx.

Now observe that Πh(φn
h,ϵ vh) = Πh(Ih(φn

h,ϵ vh)), where Ih is defined by (4.36). Therefore,
(3.8) with a Dirichlet lift of −1 tested against Ih(φn

h,ϵ vh) ∈ Sn
h,0 yields

T1 =−λ
� ℓn

h

0
∂xĉ

n−1
h ∂x(Ih(vhφ

n
h,ϵ))dx − Q

� ℓn
h

0

αh,δ(tn, ·)Πhĉ
n
h

1+ Q̂1|Πhc
n−1
h |

Πh(vhφ
n
h,ϵ)dx

−Q
� ℓn

h

0

αh,δ(tn, ·)
1+ Q̂1|Πhc

n−1
h |

Πh(vhφ
n
h,ϵ)dx.

We have ||Ihw||1,(0,ℓn
h) ≤ ||w||1,(0,ℓn

h) and ||φn
h,ϵvh||1,(0,ℓn

h) ≤ C2(ϵ), where C2(ϵ) is a generic
constant that depends on ϵ. Also, it holds (1+ Q̂1|Πhc

n−1
h |)−1 ≤ 1. Hence,

T1 ≤ C2(ϵ)||∂xĉ
n−1
h ||0,(0,ℓn

h) + 3
2
Q||Πhĉ

n
h||0,(0,ℓn

h) + 3
2
Q
√
ℓm. (4.38)

The constant (3/2) in (4.38) results from the application of the Cauchy–Schwarz inequality
to the integral (Πhĉ

n
h,Πh(vhφ

n
h,ϵ))(0,ℓm), the facts Πh(vhφ

n
h,ϵ) = (Πhvh)(Πhφ

n
h,ϵ), |Πhφ

n
h,ϵ| ≤

1, and (4.20). Next, we estimate the term T2. The function φh,ϵ has the property φn−1
h,ϵ (x) =

φn
h,ϵ(x− ℓ

n−1
h + ℓnh) by definition. Together with the fact that φn

h,ϵ is 1/ϵ–Lipschitz, this
implies |Dn−1

h,δ φh,ϵ| ≤ |ℓnh− ℓ
n−1
h |/(δϵ). Consequently,

|T2| ≤
ℓm
δϵ
|ℓnh− ℓn−1

h |. (4.39)

Now let us conclude the argument. The estimates (4.38) and (4.39) yield
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� ℓm

0
Dh,δ(φn

h,ϵĉ
n
h)(tn−1, ·)Πhvhdx≤ C2(ϵ)||∂xĉ

n−1
h ||0,(0,ℓn

h)

+ 3
2
Q||Πhĉ

n
h||0,(0,ℓn

h) + 3
2
Q
√
ℓm + ℓm

δϵ
|ℓnh− ℓn−1

h |. (4.40)

Therefore, taking the supremum over the considered vh, multiplying (4.40) by δ and sum-
ming over n= 1, . . . ,N∗ yield
� T∗

0
||Dh,δ(φh,ϵĉh,δ)||Yh

dt≤ C2(ϵ)

1+
N∗∑

n=1
|ℓnh− ℓn−1

h |

+
N∗∑

n=1
δ(||Πhĉ

n
h||0,(0,ℓn

h) + ||∂xĉ
n
h||0,(0,ℓn

h))

 .
Then, (4.37b) follows from an application of discrete Cauchy–Schwarz inequality, (4.30),
and Proposition 4.14.

Proposition 4.24 (Step (CR.6)). The family of functions {Πh,δch,δ}h,δ is relatively com-
pact in L2(DT∗).

Proof. Since (4.34) holds true, for any ϵ > 0,

{Πh,δ ĉh,δ}h,δ ⊂ {Πh,δ(φh,ϵĉh,δ)}h,δ +BL2(DT∗)

(
0;
√
T∗ϵ

)
, (4.41)

where BL2(DT∗)
(
0;
√
T∗ϵ

)
is the ball in L2(DT∗) centered at the zero function with ra-

dius
√
T∗ϵ. The relative compactness of the set {Πh,δ(φh,ϵĉh,δ)}h,δ from Proposition 4.23

and (4.41) show that {Πh,δ ĉh,δ}h,δ can be covered by finite number of L2(DT∗) balls with
radius η, for any η > 0, and hence is totally bounded in L2(DT∗). This shows that {Πh,δ ĉh,δ}
is relatively compact. Then, the relation ch,δ = ĉh,δ +1 yields the desired result.

We use Helly’s selection theorem for {αh,δ} and {ℓh,δ}, the weak compactness of
{ûh,δ} in L2(0,T∗;H1(0, ℓm)), and the relative compactness of {Πh,δch,δ} in L2(DT∗) to
prove Theorem 4.2.
Proof of Theorem 4.2 (Step (CR.7). convergence of the iterates).
Proposition 4.10 establishes the existence of a time T∗ such that αh,δ ∈ L∞(DT∗). Propo-
sitions 4.15 and 4.16 show that αh,δ ∈ BV (DT∗). Therefore, Helly’s selection theorem
guarantees the existence of a subsequence {αh,δ} up to re–indexing and a function α ∈
BV (DT∗)∩L∞(DT∗) such that αh,δ→ α in L1(DT∗) and almost everywhere in DT∗ .

Proposition 4.18 shows that the family {ℓh,δ}h,δ is bounded in BV (0,T∗). Therefore,
Helly’s selection theorem guarantees the existence of a function ℓ ∈ BV (0,T∗)∩L∞(0,T∗)
such that ℓh,δ→ ℓ strongly in L1(0,T∗) and almost everywhere in (0,T∗).

An application of Proposition 4.17 shows that there exist a subsequence {ûh,δ}h,δ and
a function û ∈ L2(0,T∗;H1(0, ℓm)) such that ûh,δ ⇀ û weakly and ∂xûh,δ ⇀ ∂xû weakly in
L2(DT∗)

81



Proposition 4.14 yields a subsequence {ch,δ}h,δ, up to re–indexing, and a function c ∈
L2(0,T∗;H1(0, ℓm)) such that ch,δ ⇀c and ∂xch,δ ⇀∂xc weakly in L2(DT∗). Proposition 4.24
establishes the strong convergence of Πh,δch,δ in L2(DT∗) and, by (4.19), ch,δ−Πh,δch,δ→ 0
in this space; hence, the strong limit of Πh,δch,δ is c.

4.4 Proof of Theorem 4.3
In this section, the following assumption is used in Propositions 4.25, 4.26, 4.27, 4.31.
Let (α, û, c) : DT∗ → R3 be a limit provided by Theorem 4.2 such that αh,δ → α almost
everywhere in DT∗ , ûh,δ ⇀û weakly in L2(DT∗), ∂xûh,δ ⇀∂xû weakly in L2(DT∗), Πh,δch,δ→
c strongly in L2(DT∗), and ∂xch,δ → ∂xc weakly in L2(DT∗). Also, let ℓ be a limit from
Theorem 4.2 such that ℓh,δ→ ℓ almost everywhere in (0,T∗).

The proof of Theorem 4.3 involves four main steps which are listed below.

(CA.1) The domains Ah,δ := {(t,x) : x < ℓh,δ(t), t ∈ (0,T∗)} converge to Dthr
T∗ := {(t,x) :

x < ℓ(t), t ∈ (0,T∗)} as defined in Theorem 4.3.
(CA.2) The limit function α satisfies (3.4a) with T = T∗.
(CA.3) The restricted limit function û|Dthr

T∗
satisfies (3.4b) with T = T∗.

(CA.4) The limit function c|Dthr
T∗

satisfies (3.4c) with T = T∗.

Proposition 4.25 (Step (CA.1)). The characteristic functions χχχAh,δ
of Ah,δ converge (up

to a subsequence) almost everywhere to the characteristic function χχχDthr
T∗

of Dthr
T∗ .

Proof. Theorem 4.3 starts on the assumption that there exists a converging subsequence
{ℓh,δ} (up to re-indexing) such that ℓh,δ → ℓ almost everywhere, where ℓ ∈ BV (0,T∗).
Define the set E = {t∈ (0,T∗) : ℓh,δ(t) ̸→ ℓ(t)}. Let µd denotes the d–dimensional Lebesgue
measure. The almost everywhere convergence of ℓh,δ(t) to ℓ(t) implies that µ1(E) = 0.
Tonelli’s theorem applied to χχχE×(0,ℓm) yields µ2(E× (0, ℓm)) = 0. Define the graph of ℓ
as Fℓ = {(t,x) ∈ DT∗ : x = ℓ(t), t ∈ (0,T∗)} (see Figure 4.4). Again an application of the
Tonelli’s theorem shows µ2(Fℓ) = 0. Let (t,x) ̸∈ (E× (0, ℓm))∪Fℓ. Then, either ℓ(t)> x or
ℓ(t)<x. When ℓ(t)<x, χχχA(t,x) = 0. Since (t,x) ̸∈E×(0, ℓm), ℓh,δ(t)→ ℓ(t). Therefore, for
h and δ small enough ℓh,δ(t)< x. That is, χχχAh,δ

(t,x) = 0, and hence χχχAh,δ
(t,x)→χχχA(t,x).

A similar argument yields the convergence for the case ℓ(t)> x. Hence we have the almost
everywhere convergence χχχAh,δ

→χχχA.

Proposition 4.26 (Step (CA.2)). The function α satisfies (3.4a) with T = T∗ for every
φ ∈ C ∞

c ([0,T∗)× (0, ℓm)).
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Figure 4.4: Continuous tumour radius ℓ and discrete tumour radius ℓh,δ.

Proof. Let φ∈C ∞
c ([0,T∗)×(0, ℓm)). Multiply (3.5) between tn+1 and tn by φn

j := ⟨φ(nδ, ·)⟩Xj

and sum over the indices to obtain T1 +T2 = T3, where

T1 := h
N∗−1∑
n=0

J−1∑
j=0

(αn+1
j −αn

j )φn
j ,

T2 := δ
N∗−1∑
n=0

J−1∑
j=0

(
un+

j+1α
n
j −un−

j+1α
n
j+1−un+

j αn
j−1 +un−

j αn
j

)
φn

j , and

T3 := hδ
N∗−1∑
n=0

J−1∑
j=0

(
(αn

j −αthr)+(1−αn
i )bnj − (αn+1

j −αthr)+dn
j

)
φn

j ,

with N∗ = T∗/δ. The fact that φN∗
j = 0 for all j and a use of (1.4) yield

T1 =−h
N∗−1∑
n=0

J−1∑
j=0

(φn+1
j −φn

j )αn+1
j −

� ℓ0

0
α0

h(x)φ(0,x)dx, (4.42)

where α0
h is a piecewise constant function defined by α0

h|Xj
= ⟨α0⟩Xj

for j = 0, . . . ,J−1 (see
Definition 3.2). A direct calculation shows the first term in the right hand side of (4.42) is
equal to

−
N∗−1∑
n=0

J−1∑
j=0

αn+1
j

�
Xj

� (n+1)δ

nδ
∂tφ(t,x)dt=−

� ℓm

0

� T∗+δ

δ
αh,δ(t,x)∂tφ(t− δ,x)dtdx.

Since αh,δ → α almost everywhere by assumption (stated at the start of Section 4.4) as
h,δ→ 0, a use of Lebesgue’s dominated convergence theorem shows that the first term in
the right hand side of (4.42) converges to −

� ℓm

0
� T∗

0 α(t,x)∂tφ(t,x)dtdx.
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Since α0
h→ α0 in L2(0, ℓ0), the second term in the right hand side of (4.42) converges

to −
� ℓ0

0 α0(x)φ(0,x)dx. An application of (1.1a) on T2 yields

T2 = δ
N∗−1∑
n=0

J−1∑
j=0

φn
j

(
|un

j+1|
αn

j −αn
j+1

2
−|un

j |
αn

j−1−αn
j

2

)

+ δ
N∗−1∑
n=0

J−1∑
j=0

φn
j

(
un

j+1
αn

j +αn
j+1

2
−un

j

αn
j−1 +αn

j

2

)
=: T21 +T22.

A use of un
0 = 0 and un

J = 0 leads to

|T21|=

∣∣∣∣∣∣δ
N∗−1∑
n=0

J−2∑
j=0

(φn
j −φn

j+1)|un
j+1|

αn
j −αn

j+1
2

∣∣∣∣∣∣
≤ h

2
||uh,δ||L∞(DT∗)||∂xφ(t,x)||L∞(DT∗)

N∗−1∑
n=0

δ
J−2∑
j=0
|αn

j −αn
j+1|,

and hence (4.4) and (4.24) yield |T21| → 0 as h→ 0. Use (1.4) and un
0 = 0 and φn

J = 0 to
obtain

T22 =−δ
N∗−1∑
n=0

J−1∑
j=0

(φn
j+1−φn

j )un
j+1

αn
j +αn

j+1
2

. (4.43)

Add and subtract δ∑N∗−1
n=0

∑J−1
j=0 (φn

j+1−φn
j )un

j

2 α
n
j to (4.43) to obtain

T22 = δ
N∗−1∑
n=0

J−1∑
j=0

un
j+1α

n
j+1

2
(φn

j+1−φn
j −φn

j+2 +φn
j+1)

− δ
N∗−1∑
n=0

J−1∑
i=0

(φn
j+1−φn

j )
un

j+1 +un
j

2
αn

j . (4.44)

We show that the first term on the right hand side of (4.44) converges to zero. A use of
the definition of φn

j , mean value theorem, and the CFL condition (4.2) yields∣∣∣∣∣∣δ
N∗−1∑
n=0

J−1∑
j=0

un
j+1α

n
j+1

2
(φn

j+1−φn
j −φn

j+2 +φn
j+1)

∣∣∣∣∣∣
≤ Cgδ||uh,δαh,δ||L∞(DT∗)||∂xxφ||L∞(DT∗)

N∗−1∑
n=0

δ
J∑

j=0
h→ 0 as δ→ 0,

where Cg is a constant independent of h and δ. Define ∂h,δφ : DT∗→R by ∂h,δφ := (φn
j+1−

φn
j )/h on Tn×Xj . Use the fact uh,δ =χχχAh,δ

ûh,δ and the trapezoidal quadrature rule on the
piecewise linear function uh,δ to express the second term in the right hand side of (4.44) as

−
� T∗

0

� ℓm

0
uh,δαh,δ∂h,δφdxdt= −

� T∗

0

� ℓm

0
χχχAh,δ

ûh,δαh,δ∂h,δφdxdt
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→−
� T∗

0

� ℓm

0
uα∂xφdxdt,

where Lemmas III(a) and III(b) are applied in the last step. Write T3 as

T3 = hδ
N∗−1∑
n=0

J−1∑
j=0

(αn
j −αthr)+(1−αn

j )bn
j φn

j −hδ
N∗−1∑
n=0

J−1∑
j=0

(αn+1
j −αthr)+dn

j φn
j . (4.45)

Use definitions of bnj , dn
j , and φn

j to rewrite the first term in the right hand side of (4.45)
and use Lemmas III(a) and III(b) (see Section 1.4.3) to arrive at the following convergence

� T∗

0

� ℓm

0
(αh,δ(t,x)−αthr)+(1−αh,δ(t,x))

(1+ s1)Πh,δch,δ(t,x)
1+ s1Πh,δch,δ(t,x)

φ(t,x)dxdt

→
� T

0

� ℓm

0
(α−αthr)+(1−α)(1+ s1)c

1+ s1c
φdxdt.

A similar argument shows that the second term in the right hand side of (4.45) converges
to −

� T
0
� ℓm

0 (α− αthr)+ s2+s3c
1+s1c φdxdt. Plugging the above in T1 + T2 = T3 concludes the

proof.

Proposition 4.27 (Step (CA.3)). For every v ∈ H1,u
∂x (Dthr

T ) such that v(·,0) = 0, û|Dthr
T

satisfies (3.4b).

Proof. Let v ∈ C ∞(Dthr
T∗ ) with v(·,0) = 0. Redefine v to be a smooth extension to DT∗ for

ease of notation. Define vh,δ(t,x) = Ihv(tn,x) on Tn×Xj for n,j ≥ 0. The piecewise linear
in space and piecewise constant in time function vh,δ satisfies vh,δ → v and ∂xvh,δ → ∂xv
strongly in L2(DT∗).

Take the test function as vh,δ(tn, ·) in (3.6), multiply with δχχχAh,δ
(tn, ·), use the fact

that uh,δ =χχχAh,δ
ûh,δ, and sum over n= 1, . . . ,N∗−1 to obtain T1 +T2 = T3, where

T1 :=
� T∗

0

� ℓm

0
χχχAh,δ

kαh,δ

1−αh,δ
ûh,δvh,δ dxdt,

T2 :=
� T∗

0

� ℓm

0
χχχAh,δ

µαh,δ∂xûh,δ∂xvh,δ dxdt, and

T3 :=
� T∗

0

� ℓm

0
χχχAh,δ

αh,δH (αh,δ)∂xvh,δdxdt.

We have χχχAh,δ
→ χχχDthr

T∗
almost everywhere and αh,δ → α in L2(DT∗). Therefore, Lem-

mas III(a) and III(b) show that

T1→
� T∗

0

� ℓm

0
χχχDthr

T∗

kα

1−α
ûvdxdt=

�
Dthr

T∗

kα

1−α
uvdxdt.
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A similar argument for T2 shows that

T2→
� T∗

0

� ℓm

0
χχχDthr

T∗
µα∂xû∂xvdxdt=

�
Dthr

T∗

µα∂xu∂xvdxdt.

Since H is continuous, H (αh,δ)→H (α) almost everywhere in DT∗ . Therefore,

T3→
� T∗

0

� ℓm

0
χχχDthr

T∗
αH (α)∂xvdxdt=

�
Dthr

T∗

αH (α)∂xvdxdt.

These convergences, the relation T1 +T2 = T3, and the density of C ∞(Dthr
T∗ ) with zero value

at x= 0 in H1,u
∂x (Dthr

T ) yield the desired result.

To establish (3.4c) we start with a definition and a covering lemma.

x0 x1

t0

t1

d

ℓh,δ ℓ

P

A−

Dthr
T∗

x

t

Figure 4.5: The domain A and A− are the geometries described in Lemma 4.28, and P is
a right–leaning parallelogram, and d= (ρCCFL)−1(t1− t0).

Lemma 4.28 (Covering lemma). For x0 < x1 and t0 < t1, let

P :=
∪

t0≤t≤t1

{t}× [x0− (ρCCFL)−1(t1− t),x1− (ρCCFL)−1(t1− t)] (4.46)

be a right–leaning parallelogram (see Figure 4.5) contained in A− :=Dthr
T∗ ∪({0}× [0, ℓ(0))∪

([0,T )×R−). Then, there exists an hP > 0 and a δP > 0 such that, for every h≤ hP and
δ ≤ δP , P ⊂ A−

h,δ := Ah,δ ∪ ({0}× [0, ℓ(0))∪ ([0,T )×R−).

Proof. From (4.46) and P ⊂ A−, we have ℓ(t1) > x1 + ϵ for some ϵ > 0. Without loss
of generality, assume that ℓh,δ(t1) → ℓ(t1) or consider a t̃1 arbitrarily close to t1 such
that ℓh,δ(t̃1)→ ℓ(t̃1). The existence of t̃1 is guaranteed by the fact that ℓh,δ → ℓ almost
everywhere. In this case, there exists an hP and a δP such that ℓh,δ(t1) > x1 for every
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h≤ hP and δ ≤ δP , which means that ℓh,δ,D(t1)> x1− ℓh,δ,BV (t1), where ℓh,δ,D and ℓh,δ,BV

are obtained from the proof of Proposition 4.18. Since ℓh,δ,D is decreasing, for t ∈ [t0, t1]
we have ℓh,δ,D(t)> x1− ℓh,δ,BV (t1) and

ℓh,δ,D(t)+ ℓh,δ,BV (t)> x1− ℓh,δ,BV (t1)+ ℓh,δ,BV (t)
≥ x1− (ρCCFL)−1(t1− t).

Therefore, for t ∈ [t0, t1], ℓh,δ(t)> x1− (ρCCFL)−1(t1− t) , which yields P ⊂ A−
h,δ.

Remark 4.29. Let v ∈ C ∞
c (A−). Then, supp(v) is compact in A− and can be covered by a

finite number of right leaning type parallelograms {Pi}i. Since there exists a C ∞
c partition

of unity {ζi}i subordinate to {Pi}i, we can write v =∑
i vζi and supp(vζi)⊂ Pi. Then, for

any h < h0 and δ < δ0, where h0 = minihPi
, δ0 = mini δPi

, the support of v is contained in
A−

h,δ, and v ∈ C ∞
c (A−

h,δ).

Remark 4.30. The fact that the nutrient concentration satisfies the Neumann boundary
condition (7.13h) forces a test function in (3.4c) not to vanish at the boundary (0,T∗]×{0}
of Dthr

T∗ . This requirement requires us to consider A− instead of Dthr
T∗ in Lemma 4.28. Since

we can extend any function v ∈ C ∞(Dthr
T∗ ) with v(t, ℓ(t)) = 0 smoothly to A−, the proof of

Proposition 4.31 is not affected by this consideration of A−.

Next, we show that the nutrient concentration c satisfies (3.4c).

Proposition 4.31 (Step (CA.4)). For every v ∈H1,c
∂x (Dthr

T ) such that ∂tv ∈L2(Dthr
T∗ ), c|Dthr

T∗
satisfies (3.4c).

Proof. Since v ∈H1,c
∂x (Dthr

T ) can be approximated by functions in C ∞(Dthr
T∗ ) with v(t, ℓ(t)) =

0 for all t∈ (0,T∗), by Remarks 4.29 and 4.30 it is sufficient to consider functions v ∈C ∞
c (P ),

where P ⊂ A− is a right–leaning parallelogram.
Choose v ∈ C ∞

c (P ). There exists an h and a δ small enough such that v ∈ C ∞
c (A−

h,δ)
by Remark 4.29. Define vh,δ(t,x) = Ihv(tn,x) for (t,x)∈ Tn×Xj for n, j ≥ 0. The piecewise
linear in space and piecewise constant in time function vh,δ satisfies the following properties:
(a) vh,δ ∈ L2(0,T∗;H1(0, ℓm)), (b) for n≥ 0, vh,δ(tn, ℓnh) = 0, (c) vh,δ = 0 on DT ∗ \Ah,δ, and
(d) vh,δ(T∗, ·) = 0.

In (3.8), take the test function as vh,δ(tn, ·) and sum over n = 1, . . . ,N∗ to obtain
T1 +T2 = T3, where

T1 =
N∗∑

n=1

� ℓm

0
(Πch,δ(tn,x)−Πch,δ(tn−1,x))Πvh,δ(tn,x)dx,

T2 :=
N∗∑

n=1
λδ

� ℓm

0
∂xch,δ(tn,x)∂xvh,δ(tn,x)dx, and

T3 :=−Q
N∗∑

n=1
δ

� ℓm

0

αh,δ(tn,x)Πhch,δ(tn,x)
1+ Q̂1|Πhch,δ(tn−1,x)|

Πhvh,δ(tn,x)dx.
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Note that the space integrals in T1, T2, and T3 are on (0, ℓnh) for each tn by the property
(c). A use of (1.4) leads to

T1 =−
N∗∑

n=1

� ℓm

0
(Πhvh,δ(tn,x)−Πhvh,δ(tn−1,x))Πhch,δ(tn,x)dx

+
� ℓm

0
Πhvh,δ(T∗,x)Πhch.δ(T∗,x)dx−

� ℓm

0
Πhvh,δ(0,x)Πhch.δ(0,x)dx.

Using the property (c) and the strong convergences Πhch,δ(0, ·)→ c0(·), Πhvh,δ(0, ·)→ v(0, ·),
∂tvh,δ→ ∂tv, Πhch,δ→ c in L2(DT∗), we deduce

T1→ −
� T∗

0

� ℓm

0
c∂tvdxdt−

� ℓm

0
c0(x)v(0,x)dx

=−
�

Dthr
T∗

c∂tvdxdt−
� ℓ(0)

0
c0(x)v(0,x)dx.

The weak convergence ∂xch,δ ⇀c, the strong convergence ∂xvh,δ→ ∂xv in L2(DT∗), and an
application of Lemma III(a) yield

T2 = λ

� T∗

0

� ℓm

0
∂xch,δ∂xvh,δ dxdt→ λ

� T∗

0

� ℓm

0
∂xc∂xvdxdt

= λ

�
Dthr

T∗

∂xc∂xvdxdt.

It is easily observed that Πh,δch,δ/(1+ Q̂1|Πh,δch,δ|)→ c/(1+ Q̂1|c|) in L2(DT∗). Then, use
of Lemma III(b) shows that αh,δΠh,δch,δ/(1 + Q̂1|Πh,δch,δ|)→ αc/(1 + Q̂1|c|) in L2(DT∗).
Since Πhvh,δ→ v in L2(DT∗) we obtain

T3→−Q
� T∗

0

� ℓm

0

αc

1+ Q̂1|c|
vdxdt=−Q

�
Dthr

T∗

αc

1+ Q̂1|c|
vdxdt.

Plugging the above in T1 +T2 = T3 yields the desired result.

This concludes the proof of Theorem 4.3, and thereby convergence of the Definition 3.2
to a threshold solution (see Definition 3.1).

4.5 Maximal time of existence
The time T∗ below which a threshold solution exists (obtained in Proposition 4.10) depends
on the parameters a∗, a∗, m02, and αR. We can always fix ℓm large enough so that
ρCCFL(ℓm−ℓ0) is larger than Tm and TM , so that T∗ = min(Tm,TM ) (see Proposition 4.10).
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The time Tm provided by (4.15) is a decreasing function of Fmin. The fact that Fmin ≥ 0
yields Tm ≤ log(αthr/a∗)/s2, which precisely occurs when a∗ = αR (if and only if Fmin = 0).
The time TM provided by (4.18) requires a more careful analysis. The domain of TM

as a function of a∗ is (m02,1]. However, TM is zero at both a∗ = m02 and a∗ = 1 (since
lima∗→1Fmax =∞). Therefore, TM has the maximum between a∗ =m02 and a∗ = 1. Here,
we need to consider three cases. If m02 > αR, then T∗ attains the maximum at an a∗

between m02 and 1 (see Figure 4.6). If m02 = αR, then TM attains the maximum between
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Figure 4.6: Variation of T∗ with respect to a∗ and a∗ when m02 > αR = 0.8.

a∗ = αR and a∗ = 1. Since Tm is decreasing on [αR,1], T∗ attains the maximum at an a∗
in (αR,1) (see Figure 4.7(a)). However, if m02 < αR, then T∗ attains maximum exactly at
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Figure 4.7: Variation of T∗ with respect to a∗ and a∗ when m02 ≤ αR = 0.8.

αR since Fmax is minimal at αR and a∗−m02 is increasing on (m02,1) (see Figure 4.7(b)).
The time TM depends also on the lower bound a∗. The range of a∗ is (0,αthr).

From (4.17) it is easy to observe that Fmax is a decreasing function of a∗. Hence T∗
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increases as a∗ approaches αthr which is evident from Figures 4.6, 4.7, and 4.8.
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Figure 4.8: The dependence of optimal T∗ on a∗.

Remark 4.32 (Sufficiency of Theorem 4.2). The optimal value of T∗ found here is of order
of 10−7 to 10−5, except when m02 < αR in which case T∗ ≈ 0.12. However, in practice, we
observe that the Discrete scheme 3.2 is stable, and thus convergent, up to at least a time
of the order of 102, as shown in Section 3.5. In other words, the time T∗ derived in the
proof of Proposition 4.10 is not restrictive, and only provides a sufficient condition for the
convergence.

Also, it must be noted that T∗ is only restricted by the estimates on the model variables,
in particular on cell volume fraction (see Proposition 4.10). The convergence analysis
(Theorem 4.3 and proofs) does not impose any restriction on T∗. Consequently, if the
Definition 3.2 is stable (the proper norms remain bounded) up to a certain time, which can
be partially assessed during numerical simulations, then the convergence analysis shows the
limits of subsequences are threshold solutions of the continuous model.

4.6 Conclusion
In this chapter, the following objectives are achieved: (a) the convergence (up to a subse-
quence) of the discrete scheme is proved, and (b) the existence of a threshold solution up
to a finite time is established. It is possible to extend the results derived in this chapter to
similar models. Though extension to higher dimensional models has challenges, this chap-
ter provides a frame work to approach similar coupled problems of elliptic, hyperbolic, and
parabolic equations in single or several spatial dimensions. A general theory for problems
with degenerate equations is open; for instance, (3.1b) which is only non–uniformly elliptic,
defined in time–dependent domains, and includes the study of well–posedness, design, and
analysis of numerical schemes.
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Chapter 5

Numerical solution of a tumour
growth model in two spatial
dimensions

5.1 Introduction
The initial growth of a proliferating tumour does not contain vascular tissues, which forces
the tumour to depend on diffused nutrients from the surrounding environment for its
growth. The modelling and numerical simulations of this stage, namely the avascular
growth stage, has been a frontier research area since the late 1970s [3, 8, 59]. Depend-
ing on the scale of observation – cellular level (microscopic) or aggregate level (tissue or
macroscopic) – and nature of interactions between the constituents, several mathematical
approaches and methods are used to model the avascular growth stage. A detailed review
of various models can be found in T. Roose et al. [54] and R. P. Araujo et al. [60].

Literature
An extensive amount of scientific literature is available regarding the mathematical

modelling of avascular tumour growth and multicellular spheroids [1, 6, 7, 33, 48, 61]. We
focus on models based on mass balance equations, diffusion equations, and continuum me-
chanics [10]. Such models can be numerically implemented using appropriate combinations
of finite element methods and finite volume methods.

This chapter complements the above mentioned works by relaxing several assumptions
and extending to more general situations like asymmetric and irregular initial tumour
geometries1.

We consider a biphasic and viscous tumour model with a time–dependent spatial
boundary in two and three spatial dimensions. The tumour cells constitute a viscous phase

1The results in this chapter is published in J. Sci. Comput.: J. Droniou, J. A. Flegg, and G. C. Remesan,
Numerical Solution of a Two Dimensional Tumour Growth Model with Moving Boundary. J. Sci. Comput.
85, 22 (2020). URL: https://doi.org/10.1007/s10915-020-01326-6
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called the cell phase and the surrounding fluid medium constitute an inviscid phase called
the fluid phase. The cell and fluid phases actively exchange matter through the processes
of cell division and cell death. The diffusing nutrient controls the birth and death rates of
the cells. H. M. Byrne et al. [7] considered an early version of this model and C. J. W.
Breward et al. [1, 33] conducted a detailed study of the one–dimensional version. In these
works, the authors present a detailed analysis of the effect of model parameters including
the viscosity coefficient of the cell phase, drag coefficient between the cell and fluid phases,
and parameters that determine attractive and repulsive forces between the tumour cells.
A model based on multiphase mixture theory is described in the work by H. M. Byrne
and L. Preziosi [6], in which they use a continuous cell–cell force term in contrast to the
discontinuous force term in [1].

The previously mentioned models successfully describe the evolution of tumour radius
and the effect of model parameters. However, to reduce a higher spatial dimensional model
to a single spatial dimension, it is assumed that the tumour is growing radially symmet-
rically. This assumption is not valid if the initially seeded tumour is irregular in shape.
Also, the time–dependent boundary is not well defined except in the radially symmetric
case. In this chapter, we adapt and recast the model in [7], so that symmetry assumptions
are relaxed, the ill–posedness of the time–dependent boundary is corrected, and numerical
simulations are feasible without reducing the dimensionality.

J. M. Osborne and J. P. Whiteley [10] developed a generic numerical framework for
multiphase viscous flow equations and applied it to simulate tissue engineering models and
tumour growth models. Though the numerical scheme presented in [10] is robust, the
tumour growth model considered is ill–posed. Here, the viscous system that governs the
cell velocity has a solution unique only up to a (rigid–body motion) function of the form
uuu(xxx) = Bxxx+βββ, where B is a skew–symmetric matrix, xxx ∈ Rd, and βββ ∈ Rd is a constant.
This non–uniqueness for viscous equations with pure traction boundary condition is a
well–established fact in the theory of continuum mechanics [99, p. 155]. At the discrete
level, the resulting non–invertibility of the coefficient matrix is overcome by imposing an
auxiliary condition. A natural approach is to set the cell velocity at the centre of the
tumour to be zero. However, this approach has the following drawbacks. Firstly, the
auxiliary condition is not inbuilt with the model; instead, it is a numerical fix. Secondly,
in the case of an asymmetrically shaped tumour a well–defined centre is absent. Even
if we define the centre in a mathematical way, say as the centre of mass, it will vary
over time, and consequently, the auxiliary condition as well, thereby making the numerical
algorithm computationally intense. Thirdly, fixing the velocity at a single point does not
fully eliminate the non–uniqueness. In fact, in two dimensions, even after imposing this
condition, solution of the viscous equation is unique only up to functions of the form
uuu(x,y) = a(y0− y,x−x0) + (α1,α2), where a ∈ R is an arbitrary constant and uuu(x0,y0) =
(α1,α2) for fixed vectors (x0,y0) and (α1,α2). The function uuu can be decomposed into
the form, uuu(x,y) = aBπ/2(x,y)T + (ay0 +α1,−ax0 +α2), where the matrix Bπ/2 =

(
0 −1
1 0

)
represents the anticlockwise rotation by π/2 radians. Therefore, uuu is the sum of a scaled
rotation and a translation in the Cartesian plane, and such functions constitute the null
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space of the linear operator acting on uuu. In the current work, we circumvent the need for
any such numerical fix by ensuring the well–posedness of the viscous system. In particular,
we employ appropriate boundary conditions arising from physical considerations on the
model.

P. Macklin and J. Lowengrub [62] considered a ghost cell method for moving interface
problems and applied it to a quasi–steady state reaction–diffusion model. However, the
model is defined on a fixed domain, and the time–dependent interface is embedded in this
fixed domain. The model we consider has an explicit moving boundary associated with
it and hence the scheme in [62] does not directly apply. M. C. Calzada et al. [56] use a
fictitious domain method to capture the time–dependent boundary. In a sense, we combine
the synergy of both of these works: the time–dependent boundary problem is transformed
to a fixed boundary problem without introducing any additional variables as in a level
set method. Instead, we use one of the original unknown variables in the model itself to
characterise the moving boundary.
Contributions

The major contributions of this chapter are as follows:

(1) A mathematically well–defined model that does not assume symmetric tumour growth
is developed by adapting previous models.

(2) Two variants of this model depicting the tumour growth in (a) free suspension and
(b) in vivo surrounded by tissues or in vitro in a passive polymeric gel are presented.

(3) We construct an extended model defined in a fixed domain and solutions of this model
are used to recover solutions of the original model. Since no additional variables are
introduced to achieve this (as in level set methods), the complexity of the model is
not increased.

(4) We consider a numerical scheme based on finite volume methods, Lagrange P2−P1
Taylor–Hood finite element method, and mass–lumped finite element methods. The
numerical scheme eliminates the need for re–meshing the time–dependent domain at
each time step, which makes the computations economical.

(5) The numerical results are consistent with the findings from previous literature. We
demonstrate the versatility of the scheme in simulating initial tumour geometries with
irregular and asymmetric shape and tumours with a changing topological structure.

Organisation
The chapter is organised as follows. The dimensionless model is presented in Sec-

tion 5.2. The preliminaries and notations are presented in Section 5.3. In Section 5.4, we
present the notion of weak solutions and the main theorem that yields the equivalence be-
tween two different weak solutions in an appropriate sense. In Section 5.5, we provide the
discretisation of the spatial and temporal domains and details of the numerical scheme. In
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Section 5.6, we apply the numerical scheme presented in Section 5.5 to cases under different
growth conditions and discuss the results in detail along with the scope for future research.

5.2 Model presentation
A brief derivation of the model is presented in Appendix B. The temporal and spatial
variables are respectively denoted by t and xxx := (xi)i=1,...,d (d = 2 or 3) in the sequel. All
equations and parameters are presented in dimensionless form. In the case d = 2, we take
xxx = (x,y). At time t ∈ (0,T ), the tumour occupies the spatial domain Ω(t) in Rd. The
initial domain Ω(0) is a part of the given data. The tumour occupies the time–space domain
DT := ∪t∈(0,T )({t}×Ω(t)). We assume that Ω(t) is a bounded domain with a C 1–regular
boundary [97, p. 627] given by Γ(t) = ∂Ω(t) for t ∈ [0,T ). The time–dependent boundary
BT := ∂DT\(({0}×Ω(0))∪ ({T}×Ω(T ))) of DT is also assumed to be C 1–regular with
respect to the time and space variables (see Figure 5.1). Let Ωℓ = (−ℓ,ℓ)d be a domain
in Rd such that Ω(t) ⊂ Ωℓ for every t ∈ [0,T ), which ensures DT ⊂ DT = (0,T )×Ωℓ. Let
nnn|Γ(t) be the unit normal to Γ(t) pointing out of Ω(t) and nnn|BT

be the (time–space) unit
normal to BT pointing out of DT . If Ω(t) ⊂ R2, then τττ |Γ(t) denotes the unit tangent
vector to Γ(t). The projection of uuu on the tangent space of ∂A, where A ⊂ Rd is denoted
by uuu∂A,τττ , which is defined by uuu∂A,τττ := (uuu|∂A · τττ |∂A)τττ |∂A in two spatial dimensions and
uuu∂A,τττ := nnn|∂A× (uuu|∂A×nnn∂A) in three spatial dimensions.

The relative volume of tumour cells (cell phase) and extra–cellular fluid (fluid phase)
are denoted by α := α(t,xxx) and β := β(t,xxx), respectively. We assume that the tumour does
not contain any voids, which implies that α+β = 1, and hence β can be determined using α.
The velocity by which the cells are moving is denoted by uuu := uuu(t,xxx). The average pressure
experienced in the fluid phase is denoted by p := p(t,xxx). The cell growth is controlled by a
limiting nutrient and c := c(t,xxx) represents its concentration.

Depending on the conditions in which the tumour is growing, the nutrient supply can
be abundant or limited. For instance, when the growth is in free suspension, the external
atmosphere acts as an unlimited source of nutrients, like oxygen. On the contrary, when
the growth is in vivo (inside a living organism), the tissues and other biological materials
around the tumour hinder the smooth diffusion of nutrients from the adjacent capillary
tissues. Hence, the nutrient supply is limited in the in vivo case. A similar delay in
nutrient supply is experienced in the in vitro (in a controlled laboratory environment) case
as the surrounding polymeric growth medium hinders nutrient diffusion. We consider the
three cases of free suspension, in vitro, and in vivo growth, and present two models to
describe them.

Since the nutrient supply is unlimited in the free suspension growth, the model is
referred to as nutrient unlimited model (NUM). On the contrary, the in vitro and in vivo
cases are described by nutrient limited model (NLM).
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Figure 5.1: Three dimensional time–space domain occupied by the tumour. Here, 2ℓ is
the side length of the square Ωℓ ⊂ R2, T is the final time of tumour growth, Ω(t) ⊂ Ωℓ

is the domain occupied by the tumour at time t, Γ(t) is the boundary of Ω(t), DT is the
time–space domain ∪0<t<T ({t}×Ω(t)), BT is the evolving boundary given by ∂DT\(({0}×
Ω(0))∪ ({T}×Ω(T ))), and DT is the time–space domain (0,T )×Ωℓ.

5.2.1 Common features of NUM and NLM models
The free suspension model comes from [7], and the in vivo/in vitro one is a slight modifica-
tion of this model. Both models are presented in dimensionless form and seek the variables
(α,uuu,p,c,Ω) such that the mass balance on α and the momentum balance on (uuu,p) hold in
the moving domain: for every t ∈ (0,T ) and xxx ∈ Ω(t),

∂tα+div(αuuu) = αf(α,c), (5.1a)
−div(αε(uuu))+∇p=−∇H (α), and (5.1b)

−div
(1−α
kα
∇p

)
+div(uuu) = 0. (5.1c)

The difference between the two models lies in the domain over which the nutrient concen-
tration satisfies the following reaction–diffusion equation:

∂tc− div(η∇c) =− Qcα

1+ Q̂1c
. (5.1d)

Above, the function f is defined by f(α,c) := (1−α)b(c)−d(c), where b(c) := (1+s1)c/(1+
s1c), d(c) := (s2 + s3c)/(1 + s4c), and s1, s2, s3 and s4 are positive constants which con-
trol proliferation and death rates of the tumour cells. The operator ε is defined by
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Equation NUM NLM
Evolution of α,uuu,p, Eqs. (5.1a)–(5.1c) xxx ∈ Ω(t)

Boundary conditions α,uuu,p (5.1f)
Initial conditions on α (5.1e)

Evolution of c, Eq. (5.1d) For xxx ∈ Ω(t) For xxx ∈ Ωℓ

Initial conditions on c (5.3) (on Ω(0)) (5.5) (on Ωℓ)
Boundary conditions c (5.2) (on Γ(t)) (5.4) (on ∂Ωℓ)

Table 5.1: Summary of NUM and NLM models.

ε(uuu) := 2µ∇suuu+ λdiv(uuu)Id, where Id is the d–dimensional identity tensor and ∇suuu =
µ(∇uuu+ (∇uuu)T )/2. The scalar constants µ and λ are the shear and bulk viscosity coef-
ficients, respectively and are related by λ = −2µ/3 and µ > 0. The function H (α) is
defined by α(α− α∗)+/(1− α)2, where α∗ is a positive constant, s+ := max(0, s), and
s− :=−min(0, s) in the sequel. The positive constant k controls the traction between the
cell and fluid phases. The constant η > 0 is the diffusivity coefficient of the limiting nu-
trient inside the tumour, and the constants Q > 0, further referred to as the absorptivity
coefficient, and Q̂≥ 0 control the nutrient consumption by the cells.

The initial condition on α and the boundary conditions on (uuu,p) are also common to
both models:

α(0,xxx) = α0(xxx) ∀xxx ∈ Ω(0), (5.1e)

(−αε(uuu)+pId)nnn|Γ(t) =−H (α)Idnnn|Γ(t), uuuΓ(t),τττ = 000 , p|Γ(t) = 0 ∀t ∈ (0,T ). (5.1f)

The moving boundary is governed by the ordinary differential equation:

∂tγγγ ·nnn|Γ(t) = uuu|Γ(t)nnn|Γ(t) ∀t ∈ (0,T ), (5.1g)

where γγγ is a local parametrisation of BT . We assume that 0<m01 ≤ α0(xxx)≤m02 < 1 and
0≤ c0(xxx)≤ 1 for every xxx ∈ Ω(0), where m01 and m02 are positive constants.

Remark 5.1. Note that in (5.1g) we only specify the normal velocity of the moving bound-
ary. The tangential velocity is not provided here. This is because tangential velocity does
not change the topological structure of BT , but changes only the parametrisation of BT .
Therefore, the domain DT , that is the time–space region enclosed by BT , is independent of
the tangential velocity of the moving boundary. The extended solution presented in Defini-
tion 5.7 below recovers the domain DT without resorting to an explicit parametrisation of
the boundary BT , and is an added advantage of the notion of the extended solution.

The initial and boundary conditions for c are different for NUM and NLM and are
made precise in the next sections. Table 5.1 summarises the two models.
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5.2.2 Nutrient unlimited model (NUM)
In the nutrient unlimited model (NUM), we assume that the tumour grows in free space.
Since the tumour has no voids within and is close–packed, it is reasonable to assume that
the nutrient diffusion rate in the tumour is much lower than that of the free space outside
the tumour. The nutrient consumed by the boundary cells is immediately replenished by
the fast diffusing external nutrient supply. As a consequence, the nutrient concentration
equation (5.1d) is only solved on the moving domain, for t ∈ (0,T ) and xxx ∈ Ω(t), and at
the boundary of this moving domain the nutrient concentration is set as the maximum
value, which is unity after non–dimensionalisation. This leads to the following boundary
and initial conditions for c:

c|Γ(t) = 1 ∀t ∈ (0,T ), (5.2)
c(0,xxx) = c0(xxx) ∀xxx ∈ Ω(0). (5.3)

5.2.3 Nutrient limited model (NLM)
In the nutrient limited model (NLM), we assume that the tumour is growing inside a
medium or a tissue. In this case, the nutrient diffusion rates in the exterior and interior
regions of the tumour are in the same numerical range. Therefore, considerable delay
can be expected for the nutrient to diffuse through the medium and reach the tumour.
Consequently, the nutrient concentration at the tumour boundary is not unity at every time
and one has to model the diffusion of the nutrient in the medium and in the tumour. Taking
Ωℓ = (−ℓ,ℓ)d as the spatial region that encloses the tumour and the medium, the nutrient
concentration equation (5.1d) is therefore solved for t ∈ (0,T ) and xxx ∈ Ωℓ (η could change
between the external medium and the tumour), and the boundary and initial conditions
on c are

c(t,xxx) = cb(xxx) ∀t ∈ (0,T ) ,∀xxx ∈ ∂Ωℓ, (5.4)
c(0,xxx) = 0 ∀xxx ∈ Ωℓ. (5.5)

This second condition means that no nutrient is available for the tumour cells initially. The
boundary data satisfy 0≤ cb ≤ 1, and depends on the modelling situation under considera-
tion. For illustrative purposes in two dimensions, we assume that blood vessels are present
at y = −ℓ or x = −ℓ only. Therefore, the nutrient concentration at the boundary, cb, is
unity at y =−ℓ or x=−ℓ and zero at the other points in ∂Ωℓ.

5.3 Preliminaries and notations

We describe a smooth hypersurface S ⊂Rd and a local parametrisation of S [110, Chapter
2]. The notion of local parametrisation of a smooth surface is crucial in extending the
NUM and NLM models defined in DT to DT , and thereby in eliminating the need for the
evolving boundary BT .
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Definition 5.2 (C 1−smooth hypersurface). A set S ⊂ Rd is said to be a C 1−smooth
hypersurface in Rd if the following conditions hold:

(SH.1) For each zzz ∈ S, there exists an open set Ozzz ⊂ Rd containing zzz and a function
fzzz :Ozzz→ R such that S ∩Ozzz = {xxx ∈ Ozzz : fzzz(xxx) = 0}.

(SH.2) Each fzzz in (SH.1) belongs to C 1(Ozzz) and ∇fzzz ̸= 0 on Ozzz.

The collection {Ozzz,fzzz}zzz∈S is called a C 1−smooth local representation of S.

Definition 5.3 (Regular surface and local parametrisation). A set S ⊂ Rd is said to be
a regular surface if for each zzz ∈ S, there exists open sets Uzzz ⊂ Rd−1 and Vzzz ⊂ Rd with
zzz ∈ Vzzz, and a diffeomorphism σσσzzz : Uzzz → Vzzz ∩S. Each σσσzzz is called a coordinate chart, and
the collection {Uzzz,Vzzz,σσσzzz}zzz∈S is called a local parametrisation for S.

If {Ozzz,fzzz}zzz∈S is a C 1−smooth local representation of the C 1−smooth hypersurface S, then
the normal to S at a point zzz ∈ S is given by ∇fzzz(zzz)/||∇fzzz(zzz)||2, and this is meaningful
since ∇fzzz(zzz) ̸= 0 by Definition 5.2. An application of Theorem 3.27 in [110] shows that
every C 1−smooth hypersurface is regular and therefore, has a local parametrisation.

5.3.1 Function spaces and norms
In this subsection, the definitions of function spaces and norms used in the remaining of
this chapter are presented. Also, recall definitions from Section 1.4.

For a domain A⊂Rd, Lp(A) (1≤ p≤∞) and H1(A) are standard Sobolev spaces of
functions f :A→R. The notation (·, ·)A stands for the standard L2(A) inner product. The
space H1

d(A) = (H1(A))d is the collection of functions uuu= (u1, . . . ,ud) such that ui :A→R
and ui ∈H1(A) for i= 1, . . . ,d.

Define the norms ||uuu||0,A := (uuu,uuu)1/2
A and ||uuu||k,A :=∑d

i=1
∑

jjj,|jjj|≤k ||∂jjjui||0,A, where jjj
is a multi-index. Define the subspace of functions in H1

d(A) with homogeneous tangential
component at ∂A, and the subspace of functions in H1(A) with homogeneous Dirichlet
boundary condition ∂A, respectively, by

HHH1
0,τττ (A) := {uuu ∈ H1

d(A) : uuu∂A,τττ = 000} and H1
0 (A) := {f ∈H1(A) : f|∂A = 0}.

The space BV (A) denotes the the space of all functions with bounded variation (see Sub-
section 1.4.1) on the set A.

Let AT = ∪0<t<T ({t}×X(t)), where {X(t)}t∈(0,T ) is a family of domains such that
X(t)⊂ Rd for every t ∈ (0,T ). Define the Hilbert spaces

HHH1,u
∇ (AT ) :={uuu ∈ (L2(AT ))d : ∂xjui ∈ L2(AT ), i, j = 1, . . . ,d

and uuu∂X(t),τττ = 000 ∀t ∈ (0,T )} and
H1,c

∇ (AT ) :={c ∈ L2(AT ) :∇c ∈ (L2(AT ))d and c|∂X(t) = 0 ∀t ∈ (0,T )}.
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5.4 Weak solutions and equivalence theorem
Recall that DT = ∪0<t<T ({t}×Ω(t)) and DT = (0,T )×Ωℓ. In this section, the well–
posedness of the weak form of the velocity–pressure system is established and two weak
formulations of the NUM model (in DT and DT ) (5.1)–(5.3) are presented. In the first one,
the scalar conservation law (5.1a) is set on the moving domain Ω(t), while in the second
one the velocity and nutrient concentration are extended to the entire box Ωℓ and the cell
volume fraction α is set to satisfy the conservation law (5.1a) on this box. The interest of
this second model, as already illustrated in the one–dimensional case in Chapter 2, is to
enable the usage of a discrete scheme using a fixed background mesh, rather than a mesh
that moves with the domain Ω(t). The moving meshes and re-meshing are technically
more difficult and expensive in 2D than in 1D, and the approach in this chapter with
second (extended) model that considers DT = is more advantageous.

The two weak formulations are shown to be equivalent in Section 5.4.2. The key
relation for proving this equivalence is Proposition 5.10, which establishes a formula for
the outer normal to the time–space tumour domain in terms of the cell volume fraction, as
well as the fact that if a piecewise smooth vector field F has an L2 divergence, then it has
a zero normal jump across any hypersurface.

We only consider here the NUM model, the analogous proofs to NLM are straight-
forward. This is because the proof only depends on the divergence form of (5.1a), which
reads (∂t,div)(α,αuuu) = αf(α,c) and is same for NUM and NLM. However, in the proof
for NUM model, the nutrient concentration needs to be extended as unity outside Ω(t).
This extension is not required in NLM as the nutrient equation is defined in the extended
domain DT .

5.4.1 Well–posedness of velocity–pressure system
We present the weak formulations of (5.1b) and (5.1c) with boundary conditions (5.1f),
which remain the same for Definitions 5.6 and 5.7. Let uuu ∈HHH1,u

∇ (DT ) and p ∈H1,c
∇ (DT ).

The weak formulation seeks (uuu,p) such that for all vvv ∈ HHH1,u
∇ (DT ) and z ∈ H1,c

∇ (DT ), and
for each t ∈ (0,T ) it holds

at
1(uuu(t, ·),vvv(t, ·))−at

3(p(t, ·),vvv(t, ·)) = Lt
α(vvv(t, ·)) and (5.6a)

at
2(p(t, ·), z(t, ·))+at

3(z(t, ·),uuu(t, ·)) = 0, (5.6b)

where at
1 :HHH1

0,τττ (Ω(t))×HHH1
0,τττ (Ω(t))→R, at

2 :H1
0 (Ω(t))×H1

0 (Ω(t))→R, and at
3 :H1

0 (Ω(t))×
HHH1

0,τττ (Ω(t))→ R are bilinear forms defined by, for j ∈ {1,2},

at
1(ψψψ1,ψψψ2) =

�
Ω(t)

α(t, ·)(2µ∇sψψψ1 :∇sψψψ2 +λdiv(ψψψ1)div(ψψψ2))dxxx,

at
2(q1, q2) =

�
Ω(t)

1−α(t, ·)
kα(t, ·)

∇q1 ·∇q2 dxxx, and
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at
3(q1,ψψψ1) =

�
Ω(t)

q1 div(ψψψ1)dxxx

for ψψψj ∈HHH
1
0,τττ (Ω(t)) and qj ∈H1

0 (Ω(t)). The linear form Lt
α :HHH1

d(Ω(t))→ R is defined by

Lt
α(ψψψ1) =

�
Ω(t)

H (α(t, ·))div(ψψψ1)dxxx.

Under the assumption that α : DT → R is known and satisfies 0 <m11 ≤ α ≤m12 < 1, we
show that for each t ∈ (0,T ), (5.6a) and (5.6b) are well-posed. In the sequel, we suppress
the time dependency for the ease of notation wherever there is no chance of confusion; for
example vvv in Lemma 5.4 stands for vvv(t, ·), and so do uuu,p, and z.

Lemma 5.4. If vvv ∈HHH1
0,τττ (Ω(t)), then there exists a constant CKP > 0 such that

CKP ||vvv||1,Ω(t) ≤ ||∇svvv||0,Ω(t).

Proof. Consider the spaces X = HHH1
0,τττ (Ω(t)), Y = [L2(Ω(t))]d×d, and Z = [L2(Ω(t))]d, and

the linear map A := ∇s : X → Y and the natural embedding T := id : X → Z. Theo-
rem 13 in [63] shows that A is an injection. The natural embedding T is compact by
Rellich-Kondrachov Theorem. Korn’s second inequality (Theorem VI of Section 1.4) yields
CK ||vvv||1,Ω = CK ||vvv||X ≤ ||∇svvv||0,Ω + ||vvv||0,Ω = ||Avvv||Y + ||Tvvv||Z . An application of Petree–
Tartar lemma (Theorem IV of Section 1.4) yields the desired conclusion.

Theorem 5.5 (Well-posedness). Let Ht
u,p := HHH1

0,τττ (Ω(t))×H1
0 (Ω(t)) and let the bilinear

operator At : Ht
u,p×Ht

u,p→ R be defined by

At ((uuu,p), (vvv,z)) = at
1(uuu,vvv)−at

3(p,vvv)+at
2(p,z)+at

3(z,uuu).

If 0<m11 ≤ α≤m12 < 1, then At is a continuous and coercive bilinear form in Ht
u,p, and

the linear form Lt : Ht
u,p → R defined by Lt(vvv,z) = Lt

α(vvv) is continuous on Ht
u,p. Hence,

there exists a unique (uuu,p) ∈ Ht
u,p such that for all (vvv,z) ∈ Ht

u,p,

At ((uuu,p), (vvv,z)) = Lt((vvv,z)). (5.7)

Proof. Continuity of the bilinear form follows from the estimates below. Since ||div(uuu)||0,Ω(t)≤√
d||uuu||1,Ω(t),

At ((uuu,p), (vvv,z))≤ 2m12(µ+λ)||uuu||1,Ω(t)||vvv||1,Ω(t) + ||p||1,Ω(t)
√
d||vvv||1,Ω(t)

+ 1−m11
km11

||p||1,Ω(t)||z||1,Ω(t) +
√
d||z||1,Ω(t)||uuu||1,Ω(t)

≤ C (||uuu||21,Ω(t) + ||p||21,Ω(t))
1/2(||vvv||21,Ω(t) + ||z||21,Ω(t))

1/2,

where C is a constant. Set vvv = uuu and z = p in At ((uuu,p), (vvv,z)) to obtain,

At ((uuu,p), (uuu,p)) = at
1(uuu,uuu)+at

2(p,p)
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≥ 2m11µ

�
Ω(t)
∇suuu :∇suuudxxx+ 1−m12

km12
||p||21,Ω(t).

Then, Lemma 5.4 yields the coercivity of At. The continuity of Lt follows from the estimate

Lt(vvv,z)≤
√

2max(1,H (m12)
√
dµd(Ω(t)))(||vvv||21,Ω(t) + ||z||21,Ω(t))

1/2,

where µd is the d-dimensional Lebesgue measure. An application of Lax-Milgram theorem
(Theorem V of Section 1.4) establishes the existence of a unique (uuu,p)∈Ht

u,p such that (5.7)
(hence, (5.6a) and (5.6b)) holds.

Definition 5.6 (NUM–weak solution). A weak solution of the NUM in DT , further referred
to as NUM–weak solution, is a five-tuple (α,uuu,p,c,Ω) such that (SW.1)-(SW.4) hold.

(SW.1) The volume fraction satisfies α ∈L∞(DT ), 0<m11 ≤ α≤m12 < 1, where m11 ≤
m01 and m02 ≤m12 are constants, and ∀φ ∈ C ∞

c (DT\({T}×Ω(T )))
�

DT

(α, αuuu) ·∇(t,xxx)φdtdxxx+
�

Ω(0)
φ(0,xxx)α0(xxx)dxxx+

�
DT

αf(α,c)φdtdxxx,

=
�

BT

(α,uuuα) ·nnn|BT
φds. (5.8)

(SW.2) The velocity uuu ∈HHH1,u
∇ (DT ) and pressure p ∈H1,c

∇ (DT ) satisfy (5.6a) and (5.6b)
for every vvv ∈HHH1,u

∇ (DT ) and z ∈H1,c
∇ (DT ).

(SW.3) The nutrient concentration is such that c− 1 ∈ H1,c
∇ (DT ), c ≥ 0, and ∀ζ ∈

H1,c
∇ (DT ) with ∂tζ ∈ L2(DT )

−
�

DT

c∂tζ dxxxdt−
�

DT

η∇c ·∇ζ dxxxdt+
�

Ω(0)
c0(xxx)ζ(0,xxx)dxxx

+
�

DT

Qcα

1+ Q̂1c
ζ dxxxdt= 0. (5.9)

(SW.4) The time-dependent boundary Γ(t) is governed by (5.1g).

Definition 5.7 (NUM–extended solution). A weak solution of the NUM in DT , further
referred to as NUM–extended solution, is a four-tuple (α̃, ũuu, p̃, c̃) such that (SE.1)–(SE.4)
hold.

(SE.1) The function α̃ is such that α̃ ∈ L∞(DT ), α̃≥ 0, and ∀ φ̃ ∈ C ∞
c ([0,T )×Ωℓ):

�
DT

(α̃, ũuuα̃) · ∇(t,xxx)φ̃dtdxxx +
�

Ω(0)
φ̃(0,xxx)α0(xxx)dxxx +

�
DT

α̃f(α̃, c̃)φ̃dtdxxx = 0.

(5.10)
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(SE.2) For a fixed t, define Ω̃(t) := {(t,xxx) : α̃(t,xxx) > 0} and D̃T := ∪0<t<T ({t}× Ω̃(t)).
Then, it holds ũuu

|DT \D̃T
= 000, p̃

|DT \D̃T
= 0, and c̃

|DT \D̃T
= 1.

(SE.3) The functions ũuu|D̃T
and p̃|D̃T

are such that ũuu|D̃T
∈ H1,u

∇ (D̃T ), p̃|D̃T
∈ H1,c

∇ (D̃T )
and satisfy (5.6a)–(5.6b) with Ω(t), DT , and α set as Ω̃(t), D̃T , and α̃|Ω̃(t),
respectively.

(SE.4) The function c̃|D̃T
is such that c̃|D̃T

− 1 ∈ H1,c
∇ (D̃T ) and satisfies (5.9) with DT

set as D̃T for all ζ ∈H1,c
∇ (D̃T ) with ∂tζ ∈ L2(D̃T ).

5.4.2 Equivalence of weak solutions
In this subsection, we show that Definitions 5.6 and 5.7 are equivalent in an appropriate
sense and under some regularity assumptions on BT . In particular, we show that the
recovered domain D̃T in Definition 5.7 is equal to DT in Definition 5.6.

Definition 5.8 (Time projection map). The time projection map πt :R+×Rd−1→R+×Rd

is defined by πt(t,yyy) = t for all (t,yyy) ∈ R+×Rd−1.

Remark 5.9 (Time-slice property of BT ). While constructing a local parametrisation for
BT in the sense of Definition 5.3, we use time also as a parameter through the time projec-
tion map πt to preserve the ‘time-slice’ geometry of BT = ∪t({t}×∂Ω(t)) in the following
sense. Let (R+×Uωωω,R+× Vωωω,σwww = (πt,γγγωωω)) be a local parametrisation around www ∈ BT

of the evolving boundary BT in the sense of Definition 5.3. Then, for a fixed time t, the
restriction {Uωωω,Vωωω,γγγωωω(t, ·)}ωωω∈{t}×∂Ω(t) is a local parametrisation of ∂Ω(t). The time-slice
structure of a local parametrisation for BT is crucial in proving Proposition 5.10.

The next proposition provides a formula for the unit normal vector to the hypersurface BT

in terms of local parametrisations.

Proposition 5.10. Let {R+×Uωωω,R+×Vωωω,σwww = (πt,γγγωωω)}ωωω be a local parametrisation of
BT as in Remark 5.9 and {Oωωω,fωωω} be a C 1–smooth local representation of it in the sense
of Definition 5.2, where ωωω = (t,zzz) ∈BT . Then, the unit normal to the hypersurface BT can
be expressed as follows:

nnnBT
= (−∇fωωω ·∂tγγγωωω,∇fωωω)
||(−∇fωωω ·∂tγγγωωω,∇fωωω)||2

. (5.11)

Proof. A (non-unit) normal to BT at the point (t,zzz) ∈ BT ∩Oωωω can be expressed as
∇(t,xxx)fωωω(t,zzz) = (∂tfωωω(t,zzz),∇fωωω(t,zzz)). Definition 5.3 yields a point (t,yyy) ∈ R+×Uωωω such
that (t,zzz) = (t,γγγωωω(t,yyy)) . Since fωωω is zero in BT ∩Oωωω the time derivative d

dtfωωω(t,γγγ(t,yyy)) is
also zero. Therefore, in BT ∩Oωωω

∂tfωωω(t,zzz) =−∇fωωω(t,zzz) ·∂tγγγωωω(t,yyy)
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and a normal to BT at (t,zzz) is provided by

∇(t,xxx)fωωω(t,zzz) = (−∇fωωω(t,zzz) ·∂tγγγωωω(t,yyy),∇fωωω(t,zzz)),

normalisation of which yields (5.11).

Remark 5.11. Since {Oωωω,fωωω} is a C 1−smooth local representation of the hypersurface
BT , for a fixed time t, the unit normal to the boundary Γ(t) is given by −∇fωωω/||∇fωωω||2.

Next, we present the equivalence between the weak formulations (SE.1) and (SW.1).

Theorem 5.12 (Equivalence). (ET.a) Let BT be C 1–regular and (α,uuu,p,c,Ω) be a NUM-
weak solution. Set α̃ := α, ũuu := uuu, p̃ := p, and c̃ := c in DT ; α̃ := 0, ũuu := 000, p̃ := 0,
and c̃ := 1 in DT\DT . If α ∈BV (DT ), then (α̃, ũuu, p̃, c̃, Ω̃) is a NUM-extended so-
lution.

(ET.b) Let (α̃, ũuu, p̃, c̃, Ω̃) be a NUM-extended solution and assume that B̃T := ∂D̃T\([{0}×
Ω(0)]∪ [{T} × Ω̃(T )]) is C 1–regular, where D̃T is given by (SE.2) in Defini-
tion 5.7 and α̃|D̃T

> 0 on B̃T . If there exist constants 0 < m̃11 ≤ m01 and
m02 ≤ m̃12 < 1 such that m̃11 ≤ α̃|D̃T

≤ m̃12 and α̃ ∈ BV (DT ), then D̃T = DT

and (α̃|DT
, ũuu|DT

, p̃|DT
, c̃|DT

, Ω̃) is a NUM-weak solution.

Proof.

(ET.a) Let {R+×Uωωω,R+×Vωωω,σwww = (πt,γγγωωω)}ωωω be a local parametrisation of BT . Choose
φ̃ belonging to C ∞

c ([0,T )×Ωℓ). Since φ̃|DT
∈ C ∞

c (DT\({T}×Ω(T ))) and α̃= 0
in DT\DT , the following holds:
�

DT

(α̃, α̃ũuu) ·∇(t,xxx)φ̃dtdxxx+
�

Ω(0)
φ̃(0,xxx)α0(xxx)dxxx+

�
DT

α̃f(α̃, c̃)φ̃dtdxxx

=
�

BT

(α,αuuu) ·nnnBT
φ̃ds (5.12a)

and �
DT \DT

(α̃, α̃ũuu) ·∇(t,xxx)φ̃dtdxxx+
�

DT \DT

α̃f(α̃, c̃)φ̃dtdxxx= 0. (5.12b)

A use of Proposition 5.10 and Remark 5.11 yields

KN (α,αuuu)|BT
·nnnBT

= (α,αuuu)|BT
·
(
−nnn|Γ(t) ·∂tγγγωωω,nnn|Γ(t)

)
, (5.13)

where KN ̸= 0 is a normalisation constant. We then use (5.1g) in (5.13) to obtain
(α,αuuu)|BT

·nnnBT
= 0. Add (5.12b) and (5.12a) to arrive at (5.10). The conditions

on ũuu, p̃, and c̃ follow naturally from Definition 5.7.
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(ET.b) Let {R+×Uωωω,R+×Vωωω,σwww = (πt,γγγωωω)}ωωω be a local parametrisation of B̃T . Define
a vector field F : DT → Rd+1 by F := (α̃, α̃ũuu). For (t0,xxx0) ∈ B̃T , define

F|B̃+
T

(t0,xxx0) := lim
(t, xxx) → (t0, xxx0)

(t, xxx) ∈ D̃T

FFF (t,xxx), F|B̃−
T

(t0,xxx0) := lim
(t, xxx) → (t0, xxx0)

(t, xxx) ∈ DT \D̃T

FFF (t,xxx).

The fact that F = 000 in DT\D̃T (since α̃
|DT \D̃T

= 0 from (SE.2)) yields F|
B̃−

T
= 000

and hence,�
B̃T

φ(α̃, α̃ũuu)|D̃T
·nnn

B̃T
ds=

�
B̃T

(
F|B̃+

T
−F|B̃−

T

)
·nnn

B̃T
φds. (5.14)

Since the weak divergence of F given by −α̃f(α̃, c̃) belongs to L2(DT ), the normal
jump (F|B̃+

T
−F|B̃−

T
) · nnn

B̃T
is zero. Consequently, (α̃, α̃ũuu)|D̃T

· nnn
B̃T

= 0 on B̃T .
Then, the fact that α̃|D̃T

> 0 on B̃T , Proposition 5.10, and Remark 5.11 yield

∂tγ̃γγωωω ·nnn|Γ̃(t) = ũuu|Γ̃(t) ·nnn|Γ̃(t). (5.15)

Since γ̃γγωωω(0, ·) = γγγωωω(0, ·), (5.15) yields D̃T = DT . Choose φ̃ ∈ C ∞
c (DT\({T}×

Ω(T ))). Define φ ∈ C ∞
c ([0,T )×Ωℓ) such that φ= φ̃ in DT . Since D̃T =DT and

α̃ = 0 on D\DT , (5.15) yields
�

DT

(α̃, ũuuα̃) ·∇(t,xxx)φ̃dtdxxx+
�

Ω(0)
φ̃(0,xxx)α0(xxx)dxxx+

�
DT

α̃f(α̃, c̃)φ̃dtdxxx

=
�

BT

φ̃(α̃, ũuuα̃) ·nnnBT
ds.

Therefore, α̃|DT
satisfies (5.8). The conditions on ũuu|DT

, p̃|DT
, and c̃|DT

follow
from Definition 5.6.

Remark 5.13. The properties that α ∈ BV (DT ) and α̃ ∈ BV (DT ) are necessary in the
proof of (ET.a) and (ET.b), respectively so that the boundary values in (5.13) and (5.14)
are well defined in sense of traces (see Theorem 1 [101, p. 177]).

5.5 Numerical scheme

5.5.1 Discretisation
Here, we consider for simplicity that the spatial dimension is equal to 2. The temporal
domain [0,T ] is uniformly partitioned into N intervals, Tn = (tn, tn+1), with δ= tn+1−tn for
n= 0, . . . ,N−1, where t0 = 0 and tN = T . Let T = {Kj}j=1,...,J be a conforming Delaunay
partition of the domain Ωℓ into triangles. The following notations will be followed in the
sequel. For i, j = 1, . . . ,J ,
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• zzzj : centroid of Kj , aj : area of Kj ,

• E(j): set of all triangles sharing a common edge with Kj ; V(j): set of all vertices of
the triangle Kj ,

• eji: common edge between the triangles Kj and Ki; mmmji: mid point of eji; nnnji: unit
normal to the edge eji pointing from the triangle Kj ; ℓji: length of eji,

• V = (vvvj)j=1,...,M : collection of vertices of triangles in T ,

• Be: set of all boundary edges in T ; and BT : set of all boundary triangles.

Definition 5.14 (Discrete average). For any real valued function f on R2, define the
discrete average of f on the triangle Kj by {{f}}Kj

:=∑
vvvi∈Vj

f(vvvi)/3, where j = 1, . . . ,J .

The following aspects need to be considered when choosing a proper triangulation for
Ωℓ.

5.5.2 Mesh-locking effect
We use a finite volume scheme to approximate the hyperbolic conservation law (5.1a), and
it is a well-known fact that finite volume solutions exhibit the mesh-locking effect, see
[64] and references therein. That is, the computed solution is preferentially oriented in
accordance with the orientation of the triangulation. Further, the domain Ω̃(t) obtained
from (SE.1) in Definition 5.7 depends on α̃. Therefore, the mesh-locking effect in α̃ at
the discrete level affects the accuracy of Ω̃, and thus other variables as well. This error
propagates at each time step in a compounding fashion. One way to eliminate this problem
is to use a very refined triangulation, but this increases the computational cost. The natural
and cost-effective way is to use an unstructured and random triangulation. Randomness
avoids any particular orientation of the triangles and thus eliminates mesh-locking from
the numerical solution.

5.5.3 Approximation of the initial domain
After triangulating Ωℓ, we approximate the initial domain Ω(0) by the set Ω0

h, where

Ω0
h := ∪{zzzj∈Ω(0)}Kj . (5.16)

However, this approximation of Ω(0) by Ω0
h is not accurate if the triangles are arranged

in a structured manner. We illustrate this in Figure 5.2, where Ω(0), a circle centred at
the origin with unit radius, is approximated by Ω0

h in different structured triangulations.
Evidently, the coarse triangulations in Figures 5.2(d) and 5.2(e) with 1024 and 4096 trian-
gles, respectively give a poor approximation of Ω(0). A reasonably good approximation is
provided by the triangulation in Figure 5.2(f); however, this triangulation contains 16,384
triangles, which makes the computations expensive over multiple time steps. If the discrete
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(a) (b) (c)
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0

0.5

1

(f)

Figure 5.2: First row: Figures 5.2(a), 5.2(b) and 5.2(c) are structured triangulations of
the domain Ωℓ = (−5,5)2. Triangulations in 5.2(d), 5.2(e), and 5.2(f), respectively contain
1024, 4096, and 16,384 triangles. Second row: Here, axes are limited to the region (−1,1)2

(black box in the first row) and corresponding approximations (green region) of an initial
domain in the shape of a circle centred at origin with unit radius.

approximation of Ω(0) is not smooth enough, the discrete solution looses its symmetry
as time evolves; this phenomenon is observed in the work by M. E. Hubbard and H. M.
Byrne [11].

We overcome the issues discussed in Subsections 5.5.2 and 5.5.3 by using an adaptive
and random triangulation. In particular, we employ the mesh generation of Ruppert’s
algorithm put forward by J. Ruppert [65]. This algorithm is based on Delaunay refinements,
and produces quality triangulations without any skinny triangles; that is every angle in a
triangle is greater than a preset value θmin. To obtain a good approximation of the domain
Ω(0), we specify a finite number of nodes N = (NNN i)1≤i≤N0 (in anti-clockwise order) on
∂Ω(0), join the neighbouring nodes NNN i and NNN i+1 by a straight line segment denoted by
NNN i,i+1, and let this collection of straight edges be denoted by L (N ). This procedure gives
a piecewise affine approximation of ∂Ω(0). Ruppert’s algorithm constructs a triangulation
such that, corresponding to each straight edge NNN i,i+1 ∈L (N ), there exists a triangle Kj
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: First row: Figures 5.3(a), 5.3(b), and 5.3(c) are the unstructured (Ruppert-
Delaunay) triangulations of the domain Ωℓ = (−5,5)2 corresponding to initial domains with
circular, bullet, and semi–annular shapes, respectively. The triangulations in 5.3(a), 5.3(b),
and 5.3(c), respectively, contain 3492, 3642 and 4084 triangles. Second row: Here, axes are
limited to the region (−1,1)2 (black box in the first row) to display the initial approxima-
tions (green region) better.

such that NNN i,i+1 is an edge of Kj .
These aspects of Ruppert’s algorithm help us to obtain a good approximation of

Ω(0) irrespective of its shape. The fact that the algorithm uses reasonably few number of
triangles is an added advantage. In Figure 5.3, we show the approximation of Ω(0) by Ω0

h,
where the triangulations are obtained by Ruppert’s algorithm. The circular, bullet-shaped
and semi-annulus shaped domains, respectively shown in Figures 5.3(d), 5.3(e), and 5.3(f),
are well approximated by the corresponding triangulations. In each case, we require fewer
than 4100 triangles to obtain a good approximation of Ω(0) as opposed to 16,384 triangles
in the case of a structured triangulation (see Figure 5.2(f)). This illustrates the economical
advantage of Ruppert’s algorithm.

Next, we present the numerical scheme. We discretise (5.1a) using a finite volume
method, (5.1b)-(5.1c) using Lagrange P2−P1 Taylor-Hood finite element method and (5.1d)
using a backward Euler in time and mass lumped P1 finite element method.
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Definition 5.15 (Discrete scheme for the NUM model). Initial data approximation:
Define

• α0
h by α0

h := α0
j on Kj, for j = 1, . . . ,J , where α0

j :=
�

Kj
α0(xxx)dxxx.

• c0h by c0h|Kj
∈ P1(Kj) for j = 1, . . . ,J , where c0h(vvvi) = c0(vvvi) for i= 0, . . . ,M .

• Ω0
h is given by (5.16).

• The function uuu0
h is obtained from (DS.c) by taking n= 0.

Updation: Fix a threshold αthr ∈ (0,1) and Ωℓ such that Ω0
h ⊂ Ωℓ. T Construct a finite

sequence of functions (αn
h,uuu

n
h,p

n
h, c

n
h){1≤n≤N} on Ωℓ such that for all 1 ≤ n ≤ N , (DS.a)–

(DS.d) hold.

(DS.a) αn
h := αn

j on Kj for j = 1, . . . ,J , where

1
δ

(αn
j −αn−1

j )+ 1
aj

∑
eji∈E(j)

ℓjiFn−1
ji

= (αn−1
j −αthr)+(1−αn−1

j )bn−1
j − (αn

j −αthr)+dn−1
j , (5.17)

where Fn−1
ji is the upwind flux between the triangles Kj and Ki through the

common edge eji defined by

Fn
ji := (uuun

ji ·nnnji)+αn
j − (uuun

ji ·nnnji)−αn
i , (5.18)

uuun
ij = uuun

h(mmmji),

bnj =
{{

(1+ s1)cnh
(1+ s1cnh)

}}
Kj

and dn
j =

{{
(s2 + s3)cnh
(1+ s4cnh)

}}
Kj

.

If eji ∈Be, then we set αn
i to zero. This choice is justified since uuun

ji = 000, so any
choice of αn

i does not change the value of the flux.

(DS.b) Ωn
h is defined through the following process: starting from Ωn−1

h ,

(1) add all triangles Kj ̸⊂ Ωn−1
h that have an edge on ∂Ωn−1

h and such that
αn

j ≥ αthr;

(2) remove all triangles Kj ⊂ Ωn−1
h that have an edge on ∂Ωn−1

h and such that
αn

j < αthr;
(3) Steps (1) and (2) lead to a new domain U ; repeat (2) with U instead of

Ωn−1
h until all triangles Kj that have an edge on ∂U satisfy αn

j ≥ αthr, and
define Ωn

h as the resulting final set U .
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(DS.c) Set the conforming finite element space of piecewise second degree polynomials
from Ωn

h to R2 with homogeneous tangential component on ∂Ωn
h by

WWWn
h,0 :=

{
φφφn

h ∈ (C 0(Ωn
h))2 : φφφn

h|Kj
∈ (P2(Kj))2 ∀Kj ⊂ Ωn

h, φφφ
n
h|∂Ωn

h
· τττ |∂Ωn

h
= 0

}
.

Set the conforming finite element space of piecewise linear polynomials from Ωn
h

to R and its subspace with homogeneous Dirichlet boundary condition on ∂Ωn
h by

Sn
h :=

{
vn

h ∈ C 0(Ωn
h) : vn

h|Kj
∈ P1(Kj) ∀Kj ⊂ Ωn

h

}
and

Sn
h,0 :=

{
vn

h ∈ Sn
h , v

n
h|∂Ωn

h
= 0

}
.

Then,

uuun
h :=

{
ũuun

h on Ωn
h,

000 on Ωℓ\Ωn
h

and pn
h :=

{
p̃n

h on Ωn
h,

0 on Ωℓ\Ωn
h,

where (ũuun
h, p̃

n
h) ∈WWWn

h,0×Sn
h,0 satisfies, for all φn

h ∈WWW
n
h,0 and v ∈ Sn

h,0,

an
1,h(ũuun

h,φφφ
n
h)−an

3,h(p̃n
h,φφφ

n
h) = Ln

h(φφφn
h),

an
2,h(p̃n

h,v
n
h)+an

3,h(vn
h , ũuu

n
h) = 0,

with an
1,h : WWWn

h,0×WWW
n
h,0 → R, an

2,h : Sn
h,0×WWW

n
h,0 → R, an

3,h : Sn
h,0×Sn

h,0 → R and
Ln

h :WWWn
h,0→ R are defined by

an
1,h(uuu,vvv) =

�
Ωn

h

αn
h (2µ∇suuu :∇svvv+λdiv(uuu)div(vvv))dxxx, (5.19)

an
2,h(p,z) =

�
Ωn

h

1−αn
h

kαn
h

∇p ·∇zdxxx,

an
3,h(z,www) =

�
Ωn

h

zdiv(www)dxxx, and

Ln
h(vvv) =

�
Ωn

h

H (αn
h)div(vvv)dxxx. (5.20)

(DS.d) Define the finite dimensional vector space of piecewise constant functions

Sh,ML :=

wh : wh =
M∑

j=1
wjχχχK̃j

, wj ∈ R,1≤ j ≤M

 ,
where, K̃j is the convex polygon around the vertex vvvj defined by

K̃j =

xxx : xxx=
∑

{i :vvvj∈Ki}
λizzzi, 0≤ λi ≤ 1,

∑
i

λi = 1

 .
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The mass lumping operator Πh : C 0(Ωℓ)→Sh,ML is defined by Πhw=∑M
j=1w(vvvj)χχχK̃j

.
Then,

cnh :=
{
c̃nh on Ωn

h,
1 on Ωℓ\Ωn

h,

where c̃nh ∈ Sn
h satisfies c̃nh|∂Ωn

h
= 1 and, with Πhc̃

n
h := (Πhc

n
h)|Ωn

h
,

�
Ωn

h

(
Πhc̃

n
h−Πhc

n−1
h

)
Πhv

n
h dxxx+ δ

�
Ωn

h

η∇c̃nh ·∇vn
h dxxx

=−δ
�

Ωn
h

Qαn
h

1+ Q̂1Πhc
n−1
h

Πhc̃
n
hΠhv

n
hdxxx ∀vn

h ∈ Sn
h,0. (5.22)

Remark 5.16 (Scheme for the NLM model). Step (DS.d) needs to be modified in the case of
numerical experiments for the NLM. In particular, we replace Ωn

h in (5.22) by Ωℓ =(−ℓ,ℓ)2

and c̃nh by cnh to incorporate the evolution of the nutrient in the entire domain DT . This
modified (DS.d) reads

(DS.d) Define Sh :=
{
vh ∈ C 0(Ωℓ) : vn

h|Kj
∈ P1(Kj) ∀Kj ⊂ Ωℓ and vh|∂Ωℓ

= 0
}
. The initial

function c0h is identically zero on Ωℓ. Then, cnh ∈ Sh,ML with ch = cbbb on ∂Ωℓ satisfies
�

Ωℓ

(
Πhc

n
h−Πhc

n−1
h

)
Πhvh dxxx+ δ

�
Ωℓ

η∇cnh ·∇vh dxxx

=−δ
�

Ωℓ

Qαn
h

1+ Q̂1Πhc
n−1
h

Πhc
n
hΠhvhdxxx ∀vh ∈ Sh,0.

The boundary condition, cbbb, imposed on ∂Ωℓ represents the supply of nutrient through blood
vessels at the boundary of the domain.

Remark 5.17 (Determining Ωn
h). The step (DS.b) determines the tumour domain. The

volume fraction of tumour cells outside Ωn
h is numerically close to zero while it is significant

on the boundary of Ωn
h. That is, the boundary of Ωn

h is the interface beyond which the
cell volume fraction reduces to a numerically small value. However, we allow the volume
fraction of the tumour cells to become close to zero in some internal parts of Ωn

h, and still
remain as integral parts of Ωn

h.
To ensure the stability of the finite volume discretisation of (5.1a), the time stepping

used in simulations must be chosen so that the CFL condition holds; as a consequence, the
tumour can only grow by one layer of triangles at each time step, which justifies the choice
in Step (1) in (DS.b). Additionally, in our simulations we noticed that multiple iterations
of Step (2) in (DS.b) are not required: after one iteration only, all the resulting boundary
triangles have a tumour volume fraction larger than αthr.
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Remark 5.18 (3D setting). The discrete schemes presented here in 2D for the NUM
and NLM models extend in a straightforward way to three-dimensional models, since they
are based on methods (finite volume, finite elements) that can be applied to 2D and 3D
equations, and have the same presentation in both dimensions.

Definition 5.19 (Discrete solution for the NUM model). The functions (αh,δ,uuuh,δ,ph,δ, ch,δ)
defined by (αh,δ,uuuh,δ,ph,δ, ch,δ) := (αn

h,uuu
n
h,p

n
h, c

n
h) on Tn for 0≤ n≤N −1, where the finite

sequence (αn
h,uuu

n
h,p

n
h, c

n
h){0≤n≤N−1} is obtained from Definition 5.15, is said to be the discrete

solution of the NUM model (5.1)–(5.3) with respect to the time discretisation (Tn)n=0,...,N−1
and the triangulation T .

A few aspects of the numerical scheme need to be discussed briefly. For more details,
the reader may refer to Chapter 2.

Threshold value

The threshold value αthr ∈ (0,1) plays an important role in obtaining accurate numerical so-
lutions. The finite volume method used in (DS.a) introduces significant numerical diffusion
while computing αn

h, due to upwinding of the fluxes. If we define the discrete domain Ωn
h

as the union of all triangle Kj with αn
h|Kj

> 0, the domain Ωn
h might be significantly larger

than the exact domain Ω(tn). Since the computation of uuun
h,p

n
h, and cnh depends crucially on

Ωn
h, the error in Ωn

h affects the accuracy of these functions as well. Further, αn+1
h depends

on uuun
h,p

n
h, and cnh. So the error propagates over time steps, finally reducing the quality

of numerical solutions significantly. To avoid this, we compare αn
h with a small positive

number, αthr. The tumour boundary ∂Ωn
h is the polygonal curve constituted by the edges

of triangles in T such that αn
j ≥ αthr in the boundary triangles Kj internal to Ωn

h, and
αn

j < αthr in every triangle external to ∂Ωn
h. However, the triangles in Ωℓ\Ωn

h have volume
fraction in the range (0,αthr). This residual volume fraction causes a spurious growth from
the term αf(α,c) in the right hand side of (5.1a) and this effect is eliminated by modifying
αf(α,c) to (α−αthr)+f(α,c) in the right hand side of (5.17).

Numerical methods

The volume fraction equation (5.1a) is a hyperbolic conservation law. Therefore, we use
a finite volume scheme with piecewise constant solutions on each triangle Kj . The piece-
wise constant solutions αn

h have the added advantage of easy computation of the integrals
in (5.19)–(5.20). The Lagrange P2−P1 Taylor-Hood method ensures the stability of the
solutions (uuun

h,p
n
h) obtained from (DS.c); note that when αn

h approaches unity, (5.1b) and
(5.1c) become a Stokes system. Moreover, taking the values of uuun

h at the edge mid points
facilitates a straightforward computation of the numerical flux defined by (5.18). The
backward in time Euler method ensures the stability of the numerical solutions cnh ob-
tained from (DS.d). The mass lumped P1 finite element method and the Delaunay based
triangulation are used to obtain the positivity and boundedness (by unity) of cnh [32].
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5.6 Numerical results
The tests conducted in this section are categorised into two sets, Set-NUM and Set-NLM,
corresponding to NUM and NLM models. The values of the parameters that remain the
same in Set-NUM and Set-NLM are tabulated in Table 5.2. The numerical values in the

Parameter Value Parameter Value
δ 0.1 µ 1

s1, s4 10 λ -2/3
s2, s3 0.5 αthr 0.01
Q̂ 0 α∗ 0.8

Table 5.2: Dimensionless parameters used in the numerical experiments for Set-NUM and
Set-NLM.

below table are adapted from [1] in which a similar model in one spatial dimension is consid-
ered. Values of the parametersQ and η depend on specific cases and are provided in the later
experiments. In all sets of experiments, the initial volume fraction is given by α(0,xxx) = 0.8
when xxx∈Ω0

h and α(0,xxx) = 0 when xxx ̸∈Ω0
h, and the time step δ is set as 0.1 (see Remark 5.17).

In all simulations, the images are represented in a large enough box that contains tumour
domain depicted therein well in its interior. The MATLAB code for NUM simulations can
be found at https://github.com/gopikrishnancr/2D_tumour_growth_FEM_FVM.

5.6.1 Setting for NUM simulations (Set–NUM)
We simulate the evolution of tumours starting with initial domains of the shapes as in
Figures 5.3(d)–5.3(f). In all the simulations, the dimension of the square Ωℓ is (−5,5)2.
The final time is set at T = 20. The triangulations are as in Figures 5.3(a)–5.3(c).

In the simulations corresponding to Figure 5.4, we set Q= 0.5 and η = 1. This figure
shows the state of the variables: volume fraction, nutrient concentration, negative pressure,
and the momentum – defined as the product of the volume fraction and the cell velocity
vector field – at the time T = 20 from the top row to the bottom row, respectively. The
columns from the left to the right depict the evolution of a tumour initially seeded with
cells in the shape of a circle, bullet and semi-annulus, respectively.

5.6.2 Setting for NLM simulations (Set–NLM)
In Set-NLM tests, we study the evolution of a tumour that was initially circular. The
dimension of the square Ωℓ is (−5,5)2 and the final time T = 30. We set Q= 0.01 and η= 2.
It is worthwhile to notice that we keep η to be the same inside and outside the tumour
region for simplicity. However, in a more generic situation, η will vary between the tumour
region and external medium. In this set of experiments, volume fraction and nutrient
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Figure 5.4: Set-NUM: Rows one to four illustrate the volume fraction, nutrient concentration,
negative pressure, and cell momentum at T = 20, respectively. The variables in columns one to
three correspond to an initial domain, Ω(0), in the shape of a circle, bullet, and semi-annulus,
respectively.
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Figure 5.5: Set-NLM: Evolution of a tumour with a circular initial geometry. Rows one to
four illustrate the variables volume fraction, nutrient concentration, negative pressure and cell
momentum, respectively and columns one to three illustrate state of the variables at times T =
10, 20, and 30, respectively.
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concentration are solved in the entire spatial domain Ωℓ, while cell velocity and pressure
are solved in Ωn

h at each tn. We set the boundary values of the nutrient concentration c as
follows: c = 0 on y = 5 and x = 5, and c = 1 on y = −5 and x = −5. The initial nutrient
concentration is given by c0(0,xxx) = 0. In Figure 5.5, the columns from the left to the right
show the state of the variables at time T = 10, 20 and 30, respectively. The rows from the
top to the bottom represent, volume fraction, nutrient concentration, negative pressure,
and cell momentum vector field, respectively.

5.6.3 Discussion on numerical results
Set–NUM, effect of initial tumour shape

Numerical experiments in Subsections 5.6.1 and 5.6.2 substantiate the beneficial aspects
of the discrete scheme (Definition 5.15) developed in Section 5.5. This scheme is able to
simulate tumour geometries with arbitrary shapes (see Figure 5.4). Firstly, we considered a
tumour with unit circular shaped initial geometry in Set-NUM and in this case, the initial
volume fraction is uniform and symmetric about the origin. The nutrient concentration at
the boundary of the tumour is unity throughout the simulation. Therefore, the tumour
does not experience any unbalanced force that disturbs its symmetry and we expect radi-
ally symmetric growth. The numerical results in Figure 5.4(a), 5.4(d), 5.4(g), and 5.4(j)
confirm this argument. It is clear that the tumour is growing with radial symmetry as the
volume fraction distribution in Figure 5.4(a) indicates. However, such symmetry cannot
be expected for the cases with asymmetric initial geometries. This is corroborated by the
numerical experiments with the bullet shaped and semi-annular shaped initial geometry.
In the case of a bullet shaped initial geometry, since much of the volume fraction is dis-
tributed along the y-axis rather than along the x-axis, a natural expectation is that the
vertical dimension of the tumour is longer than the horizontal dimension, which the numer-
ical simulations show. The asymmetric growth in the case of the tumour with semi-annular
initial geometry arises in a different way. The convex side of the tumour with apex at
x= 1 grows normally outwards, while the non-convex side grows into the semi-annular gap
between y =−0.5 and y = 0.5, and x= 0 and x= 0.5 (see Figure 5.4(c) and 5.4(l)).

As the tumour proliferates and expands, it becomes more difficult for the nutrient
to diffuse into the interior region of tumour. The nutrient concentration distribution in
Figures 5.4(d), 5.4(e), and 5.4(f) show the decreasing value of concentration towards the
interior of the tumour irrespective of the initial geometry. The depletion of nutrient level
inside the tumour causes cell necrosis and as result, the extra-cellular fluid tends to fill the
space generated. This is clearly reflected by the fact that the fluid pressure is more negative
(see Figures 5.4(g), 5.4(h), and 5.4(i)) towards the interior of the tumour and hence the fluid
flow direction is from outside to inside. The cell velocity vector field shows the direction in
which the cells are moving. When the initial geometry of the tumour is circular, the cells
move in a radial direction with roughly equal magnitude (see Figure 5.4(j)). However, in
the case of asymmetric initial geometries the cell velocity vector field is also asymmetric
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Figure 5.6: The evolution of volume fraction and nutrient concentration with η = 0.1 and
Q= 0.01 in NLM. Observe that the cells undergo necrosis before the nutrient can reach the
tumour.

(see Figures 5.4(k) and 5.4(l)).

Set–NLM, attraction towards nutrient source

The simulations for the Set–NLM test give interesting results. It can be observed from
the volume fraction at times 10, 20, and 30 that the tumour grows towards the south-west
corner. This affinity can be explained using the differential supply of the nutrient. The
only source of the nutrient for the tumour comes from the left and bottom boundaries of
the square Ωℓ. As Figures 5.5(d), 5.5(e) and 5.5(f) show, the nutrient diffuses from the
left and the bottom boundaries towards the tumour. The tumour starts to grow when
this diffused nutrient reaches its vicinity. From Figure 5.5(a), we see that the tumour has
not grown, until T = 10, the time at which the diffused nutrient just meets the tumour
boundary. The tumour starts to grow after this time as observed from Figures 5.5(b)
and 5.5(c). The numerical values of Q and η are crucial in determining the fate of the
tumour. In fact, the diffusivity, η, which controls the ease of nutrient to diffuse into the
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(a) Q = 0.01 (b) η = 1.0

Figure 5.7: Variation of the tumour radius, ℓ(t) with respect to the time for different values
of η and Q.

tumour and the surrounding medium needs to be high enough so that the nutrient is able
to reach the tumour vicinity before all the cells die. This situation occurs with numerical
values Q = 0.01 and η = 0.1. Here, the low value of η prevents the nutrient from reaching
the tumour cells in adequate time (see Figures 5.6(d)-5.6(f)), and as a result the volume
fraction of the tumour cells gradually decreases (see Figures 5.6(a)-5.6(c)). Moreover, this
suggests that a higher value of η facilitates faster tumour growth owing to faster diffusion
of the nutrient, and is supported by the numerical results in Figure 5.7(a). Here, the
growth (set–NLM) of a tumour with circular initial geometry is studied, and we quantify
the tumour size by the tumour radius, ℓ(t). Furthermore, we see that the tumour size
decreases as Q increases, indicated by Figure 5.7(b). We note that, broadly speaking,
increasing η and decreasing Q have a similar effect in producing a larger tumour volume
(see Figures 5.7(a)-5.7(b)). In this way, identifiability issues may be encountered when
estimating these two parameters from data that solely measures tumour size over time.
However, supplementing with additional data on oxygen perfusion through cancer tissue
(see, for example, [66]), we expect that both parameters could be estimated.

Grid orientation effect

The orientation of the triangulation has little effect in determining the tumour radius as
illustrated in Figure 5.8. In these simulations, three rotated versions (by angles 0, π/2 and
π) of a random triangulation are used for Set-NUM experiments, with an initial tumour in
the form of a disk (this ensures that the rotated triangulations remain suitable for this initial
shape, see Section 5.5.3). The resulting volume fraction profiles remain mostly circular,
with slight effects of the rotations but no change in the final tumour radius.
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Figure 5.8: Effect of orientation of the triangulation on tumour radius. In Figures 5.8(a)–
5.8(c) the triangulation is rotated anticlockwise by the angles ϑ = 0, π/2 and π radians.
The corresponding volume fraction profile at T = 20 with temporal discretisation factor
δ = 0.1 is provided in Figures 5.8(d)–5.8(f).

Handling topology changes of tumour

Another notable feature of scheme is that it can simulate tumour growth starting from
highly irregular initial geometries with multiple disconnected components. Consider the
growth of a tumour initially having three disconnected components with irregular bound-
aries. The irregularity of the initial tumour geometry is shown in Figure 5.9(a). The cell
volume fraction at times T = 0, 5, 10, 20, 20, 30, and 40 is plotted in Figure 5.9. As the
tumour grows the multiple components merge and the tumour continues to grow as a single
entity. The numerical scheme is designed in such a way that intrinsic changes in the tumour
geometry like the variation in the number of connected components is seamlessly dealt with
and the numerical results in Figure 5.9 support this. It can be observed from Figure 5.9(f)
that a necrotic core of dead cells has developed owing to the nutrient starvation experienced
at the tumour centre due to its large size. The numerical scheme captures a broad spectrum
of features as discussed previously for both symmetric and asymmetric initial geometries.
A key factor that helps to achieve this is the implicit recovery of the boundary using the
volume fraction. In the scheme it is not required to follow the movement of each point
in the boundary, which may result in overlapping of edges and other similar complexities.
Defining the interior of the tumour as the union of triangles with active cell volume fraction
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eliminates these issues, thereby making the numerical scheme versatile for a wide range of
scenarios.

(a) T = 0 (b) T = 5 (c) T = 10

(d) T = 20 (e) T = 30 (f) T = 40

Figure 5.9: Stages of cell volume fraction for tumour growth (NUM) with an irregular
initial shape having multiple initial components.

Using structured meshes

The use of a random Delaunay mesh is critical in obtaining good solutions that have minimal
mesh-locking. We present the evolution of the volume fraction of a tumour starting with
a circular initial geometry, simulated using structured triangulations with 1024, 4096, and
16,384 triangles in Figures 5.10(a)– 5.10(c), Figures 5.10(d)– 5.10(f), and Figures 5.10(g)–
5.10(i), respectively. The final time is set as T = 20, and the time step is δ= 0.1. The initial
geometry is circular (see Figure 5.10(g)). As the triangulations become more refined, it can
be observed that the tumour becomes more radially symmetrical. This observation indicates
the convergence of the discrete solutions to the radially symmetric solution as the spatial
discretisation factor approaches zero. However, the tumour also becomes more squarish
as time increases, as shown in Figure 5.10, showing that, for a long time, an extremely
fine structure triangulation would have to be used to obtain a reasonable solution. Such
refinement would come at a great cost, whereas the use of a random mesh (with adaptation
only to the initial shape) provides suitable solutions with relatively few triangles.
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T = 0

(a)

T = 10

(b)

T = 20

(c)

(d) (e) (f)

(g) (h) (i)

Figure 5.10: Evolution of volume fraction with respect to time on structured triangulation.
The initial domain is a circle centred at origin with unit radius. Figures 5.10(a)– 5.10(c) are
computed using the triangulation in Figure 5.2(a), Figures 5.10(d)– 5.10(f) are computed
using the triangulation in Figure 5.2(b), and Figures 5.10(g)– 5.10(i) are computed using
the triangulation in Figure 5.2(c).
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Assessment of convergence

tr
ia

ng
ul

at
io

n

(a) (b) (c)

vo
lu

m
e

fra
ct

io
n

(d) (e) (f)

Figure 5.11: Convergence of cell volume fraction for Set-NLM with respect to the spatial
discretisation factor. The triangulations in Figures 5.11(a), 5.11(b), and 5.11(c) contains
1248, 2084, and 4996 triangles. The volume fractions for Set–NLM are computed at the
time T = 20.

The convergence of the scheme, as the grid size is reduced, is clearly observable in the
case of random triangulations; see Figure 5.11. However, this convergence requires uniform
refinements of the mesh, because it depends on both on a Courant–Friedrichs–Lewy (CFL)
(see Remark 4.1) and on an inverse CFL relation, as demonstrated in Chapter 4. These
conditions take the form

Cicfl ≤ max
0≤n≤N

sup
Ωn

h

||uuun
h||2

δ

amax︸ ︷︷ ︸
inverse CFL condition

≤

CFL condition︷ ︸︸ ︷
max

0≤n≤N
sup
Ωn

h

||uuun
h||2

δ

amin
≤ Ccfl, (5.23)

where Cicfl and Ccfl are positive constants, amax = maxj aj , amin = minj aj , ||·||2 is the
Euclidean norm; recall that aj is the area of triangle j. The temporal discretisation factor δ
is fixed by the smallest triangle through the CFL condition (5.23). With this δ, at each time
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(a) (b)

Figure 5.12: Radially aligned triangulation - Figure 5.12(a) shows the triangulation on the
domain Ωℓ = (−5,5)2 and Figure 5.12(b) shows an enlarged view of the first quadrant.

step the diffusion of tumour cells inside the larger triangles would not be sufficient to create
a volume fraction αn

h larger than the threshold, and the tumour would not expand. Such
a situation is avoided by the inverse CFL condition (5.23), which ensures a lower bound
on numerical diffusion on large triangles also. Nevertheless, the CFL and inverse CFL
condition together restrict the possible choices of temporal discretisation factor. Since
Ruppert’s algorithm performs a fine refinement on triangles near the boundaries of the
initial domain and bounding box, and a relatively coarser refinement on the triangles in
between these two boundaries, it leads to a refined triangulation with considerable difference
in the sizes of triangles within. Therefore, in the case of very fine refinements, it is better to
consider a structured triangulation well adapted to the initial condition, and then perturb
the vertices of triangles randomly to remove the mesh-locking effect (see Figures 5.11(a)–
5.11(c)). It can be observed from Figures 5.11(d)– 5.11(f) that the volume fractions are
indeed converging with mesh refinement.

(a) T = 0 (b) T = 10 (c) T = 20

Figure 5.13: Evolution of volume fraction obtained from Set–NUM experiment on the
radially aligned triangulation in Figure 5.12(a).
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Mesh locking and loss of radial symmetry in the case of structured triangulations is
not due to the procedure using a threshold value to capture the boundary of a tumour.
Instead, this is a classical problem associated with the nature of triangulations and finite
volume schemes (see subsection 5.5.2 also). If the symmetry of a discrete solution is known
a priori and we use a triangulation that respects this symmetry, then the discrete scheme
in Definition 5.15 preserves this symmetry. For instance, consider the evolution of a tumour
with an initial geometry of a unit circle centred at the origin. Since the tumour is expected
to evolve with a radial symmetry, we use a triangulation wherein the triangles are aligned
with concentric circles centred at the origin (see Figure 5.12(a)). In this case, it can be
observed from Figures 5.13(a)–5.13(c) that the discrete volume fraction remains radially
symmetrical. However, this method cannot be used in the case of initial geometries like the
bullet or semi–annular shape since the symmetry properties of discrete solutions are not
known a priori. Additionally, meshing a domain respecting a present internal geometry
can be complicated. In such cases, the most economically viable choice is to resort to a
random triangulation.

Influence of threshold value
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(a) Set–NUM: Q = 5 – solid lines, Q = 0.5 –
dashed lines, η = 1 – blue lines, and η = 0.1 –
red lines.
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(b) Set–NLM: Q = 0.01 – solid lines, Q = 0.5 –
dashed lines, η = 1 – blue lines, and η = 2 – red
lines.

Figure 5.14: Dependence of ℓ(T ), where T = 20 on αthr.

The choice of threshold value, αthr, influences the evolution of the tumour radius and
hence, by extension, the other variables. We cannot choose the threshold value to be too
large or too small. Such a choice will incur a cascading array of high errors on the tumour
radius and other variables as the time increases. A very small threshold value implies
that the volume fraction is too small on triangles closer to the boundary, thus forcing the
velocity–pressure system to be singular. The variation of tumour radius at the time T = 20
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with respect to the threshold value over the range [0.005,0.015] for Set–NUM and Set–
NLM experiments is provided in Figure 5.14. The radius varies by a maximum of about
15% for Set-NUM and 20% for Set-NLM as the threshold value varies from 0.005 to 0.015.
Therefore, deviation in the tumour radius with respect to the threshold value is present.
But, with a proper choice of the threshold value, it is possible to minimise the error in
the tumour radius from the exact value [52]. Moreover, one of the main motivations for
simulating cancer growth is perhaps not to get an extremely accurate representation of the
tumour radius, but more to study the effect of drugs; in this situation, the simulation of
the current model would serve as a baseline, to be compared with simulations obtained
with a model including said drug effect, and run using the same threshold value.

5.7 Conclusions
In this chapter, a mathematically well-defined model is developed which can replicate the
evolution of an avascular tumour that grows from a variety of initial geometries. The
equivalent formulation in Section 5.4 and Theorem 5.12 yield a framework to design a
numerical scheme that does not require explicit tracking of the time-dependent boundary
associated with the tumour. The tumour domain is recovered as the union of all triangles
in which the volume fraction of the tumour is greater than a fixed threshold value. While
implementing the scheme, a multitude of factors, like the nature of triangulation and the
threshold value need to be taken into account. For instance, we illustrate the mesh-locking
effect associated with the use of structured triangulations and the advantage of using a
random triangulation. The numerical results for both NUM and NLM models support the
heuristic expectations and results from previous literature [1, 11]. The tests also illustrate
the nutrient dependent growth of the tumour as in Figure 5.5. In addition to this, the
numerical scheme seamlessly deals with the complex tumour geometries in Figure 5.9,
including initially disconnected tumour groups that merge later on. The numerical results
justify the ability of the scheme to take care of different irregular tumour geometries and
topological structures, which in turn shows its practical applicability in simulating tumour
growth from real-time clinical data. As such, the work presented here could be extended
to quantify the effect of drug treatment on an evolving tumour.
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Chapter 6

Strong BV estimates for FV
approximations of scalar conservation
laws and applications

6.1 Introduction
Consider the following scalar hyperbolic conservation law in R2 with a homogeneous source
term and an initial data of bounded variation (BV ):

∂tα+div(uuuf(α)) = 0 in ΩT and
α(0, ·) = α0 in Ω,uuu= 0 in ∂Ω.

}
(6.1)

where α is the unknown, α0 : Ω→ R is a known a priori function of BV , uuu = (u,v) is
the advecting velocity, ΩT := (0,T )×Ω, Ω := I× J, I := (a,b) ⊂ R and J := (c,d) ⊂ R are
intervals. Here the divergence div(uuu) is not zero. The function f quantifies the amount of
material advected with the velocity uuu and is called the flux function. It is assumed that f
is Lipschitz continuous with Lipschitz constant Lip(f), which is a classical assumption in
literature [105]. Finite volume methods are extensively used to compute numerical solutions
to (6.1) since such schemes respect the conservation of mass property associated with the
underlying partial differential equation. The homogeneous boundary condition uuu = 0 is
only for technical simplicity. The analysis in this chapter extends to the general case with
uuu= uuub on ∂Ω1.

Literature
Total variation properties of weak and entropy solutions of (6.1) are rather classical results.

1The work in this chapter has been accepted to publish in ESAIM: Mathematical Modelling and Numer-
ical Analysis.: Remesan, G. C. Strong bounded variation estimates for the multi-dimensional finite volume
approximation of scalar conservation laws, (36 pages), June 2021. URL: https://arxiv.org/abs/2004.12346

125

https://arxiv.org/abs/2004.12346


E. Conway and J. Smoller [67] studied conservation laws of the form

∂tα+
d∑

j=1
∂xjfj(α) = 0, (6.2)

where BV initial data and (fj)j=1,...,d are assumed to be in C 1(R;R). They studied a finite
difference scheme on a uniform Cartesian grid (see Definition 6.2) and showed that discrete
solutions have uniform BV . The limit solution obtained from a strongly convergent subse-
quence is then showed to be a weak solution and is a function with BV . N. Kuznetsov [68]
provided early results on BV properties of entropy solutions of (6.2). This article [68]
establishes that the BV seminorm of the entropy solution to (6.2) at any time is bounded
by the BV seminorm of the initial data. M. G. Crandall and A. Majda [69] considered
monotone finite difference approximations of (6.2) with BV initial data on uniform Carte-
sian meshes and established uniform BV estimate for discrete solutions. This estimate is
used to prove the convergence of the discrete solutions to the unique entropy solution in
strong L1–norm and to prove that the entropy solution also inherits the BV property of
the discrete solutions. Later, this work was extended to nonuniform Cartesian meshes by
R. Sanders [70]. B. Merlet and J. Vovelle [71, 72] considered linear advection equations
of the form (6.1) with f(α) = α, uuu ∈W 1,∞(R+×Rd;Rd), and div(uuu(t, ·)) = 0. The BV
seminorm of the unique weak solution of this problem, constructed using the characteris-
tic method, is bounded and the bound depends on the BV seminorm of the initial data.
However, discrete solutions corresponding to this problem obtained by using finite volume
schemes on general polygonal meshes are not proved to satisfy a uniform BV estimate (see
the Remark 1.5 in [72, p. 7]). In fact, to show that the finite volume solutions converge to
the entropy solution, whose existence is known a priori, it is enough to have a weak BV
estimate [73, p. 143][105, p. 161] of the following form

N∑
n=0

δ
∑
e∈E

|f(αp
e)−f(αn

e )|
∣∣∣∣∣
�

e
uuu(tn, ·) ·nnne ds

∣∣∣∣∣≤ Ch−1/2, (6.3)

where δ is the temporal discretisation factor, h is the spatial discretisation factor, E is the
set of mesh edges, nnne is a unit normal to e, α(p/n)

e are the values of the discrete solution on
the neighbouring polygons of e. The weak BV estimate ensures convergence in nonlinear
weak–∗ sense (see Definition 6.3 in [105, p. 100]) to a Young measure, called a process
solution. In this scenario, the nonlinear weak–∗ convergence actually becomes strong Lp

convergence (see Theorem 6.4 and 6.5 in [105, p. 187-188]). Uniqueness of the process
solution is crucial in this technique and hence, it is difficult to use it in the case of coupled
systems like those appearing in tumour growth models. The relationship between process
solution and function solution is not very clear in this case and an a priori compactness
result like a uniform BV estimate appears necessary to obtain strong Lp convergence.

A recent uniform BV estimate on finite volume solutions of conservation laws of the
form (6.2) on uniform Cartesian grid is obtained by K. H. Karlsen and J. D. Towers [74].
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They consider (6.2) with an auxiliary boundary condition fff · nnnΩ = 0, where nnnΩ is the
outward unit normal to ∂Ω. C. Chainais-Hillairet [75] also provides a uniform BV estimate
on finite volume solutions of fully nonlinear conservations laws on uniform square Cartesian
grids (see subsection 6.5 for details).

In [105, p. 153], it is stated that weak BV estimates may be extended to the case with
div(uuu) ̸= 0. It is also mentioned in [105, p. 154] that BV estimates in higher dimensional
Cartesian grids reduces to a one dimensional discretisation. However, the corresponding
proofs are not provided.

Contributions
In all of the works reviewed above, either the advecting velocity vector is component–wise
constant (see (6.2)) or the advecting velocity is assumed to be divergence–free. However,
these may not be realistic assumptions in applications as evident from (6.5) below. While
discretising physical models, it is imperative to refine the regions where discontinuities of
the solution are expected and to retain other regions relatively coarse so that the scheme
remains economical. A uniform BV estimate is crucial in enabling the nonlinear terms to
converge and hence to prove existence of a solution.

The main contributions of this chapter are stated below.

• A standard assumption in the literature that deals with hyperbolic conservation laws
is that div(uuu) = 0. This assumption is relaxed for the conservation law (6.1) and
subsequent analysis in this chapter.

• A finite volume scheme on nonuniform Cartesian grids in two–dimensions is consid-
ered, and the analysis holds in general for the class of monotone numerical fluxes.
The nonuniformity of Cartesian grid can be used to refine the mesh adaptively and
economically.

• A strong BV estimate for nonlinear conservation laws in three spatial dimensions is
derived.

• Finite volume solutions satisfy a uniform BV estimate in space and time and this
result is extended to the case of fully nonlinear conservation laws [75].

• The existence of a weak solution for a tumour growth model is shown by utilising
the BV estimates on Cartesian grids. Compactness results rendered by uniform BV
estimates present a convergent subsequence out of a family of discrete solutions con-
structed by applying a finite volume scheme to (6.5a) to the model.

The uniform BV estimate in space and time for linear and nonlinear conservation laws is
obtained by computing the variation of the discrete solution along orthogonal Cartesian
axes separately. This method has two major difficulties. Firstly, the term αdiv(uuu) serves as
an additional source function since divergence of the velocity field is not zero. The difference
of αdiv(uuu) at time step tn+1 across neighbouring control volumes is estimated in terms of
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the BV seminorm of div(uuu) and L∞ bound of α at time step tn. Secondly, while estimating
the difference of the discrete solution across two control volumes in one direction, we obtain
terms that contain differences of numerical fluxes across the other orthogonal direction and
vice–versa. This is a potential obstacle to the standard technique of writing the variation of
the discrete solution at tn+1 across two control volumes as a convex linear combination of
variations of the discrete solutions across neighbouring control volumes at tn. We introduce
the idea of an intermediate nodal (edge) flux in two (three) spatial dimensions, which is
the numerical flux across control volumes sharing only a single vertex (edge), to transform
the differences along y and z directions into that along x direction and vice–versa. This
helps to obtain a relation of the form

BV (n+1)≤BV (n)+
� tn+1

tn

A(t)dt, (6.4)

where BV (n) is the BV seminorm of the discrete solution at tn, and A(t) depends on BV
seminorm of div(uuu) and ∥∇uuu(t, ·)∥L∞(Ω). Finally, an application of induction on (6.4) yields
the BV estimate on the discrete solution.

Organisation
This chapter is organised in the following fashion. The models are presented in

Section 6.2. In Section 6.3, we present the necessary notations, assumptions, function
spaces, and the finite volume scheme. Section 6.3 also presents the main results. This
includes the strong BV estimates on finite volume solution of nonlinear conservation laws
in 2D and 3D and existence of a weak solution for a tumour growth model in 2D. The proofs
of uniform BV estimate of finite volume solutions of (6.1) is presented in Section 6.4. In
Section 6.5, we show the uniform BV estimate for conservation laws with fully nonlinear
flux. The numerical results and discussion are presented in Section 6.6. The uniform BV
estimate for scalar conservation laws in three spatial dimensions in presented in Section 6.7.
The semi–discrete analysis that proves the existence of a weak solution of the tumour growth
model is conducted in Section 6.8. The conclusions are presented in Section 6.9.

6.2 Applications
Conservation laws of the form (6.1) are crucial in practical applications. Usually they model
density or concentration of a conserved quantity in a coupled system, where the conservation
law is strongly entangled with the equation that governs the advecting velocity, and with
other governing equations, if present. This coupled nature renders the advecting velocity as
a nonlinear function of the concentration of the conserved variable. Moreover, the velocity
vector field uuu is not necessarily divergence–free, see (6.5b). The divergence of the velocity
field manifests as a source term in (6.1). Hence, while attempting to obtain a uniform BV
estimate on discrete solutions of (6.1), we need to also account for divergent velocity vector
fields. As a result the current BV results available in the literature with the assumption
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div(uuu) = 0 cannot be directly applied to such conservation laws. Two examples are provided
next. The existence of a weak solution to the first example is proved in this chapter. The
second example is more complex than the first one and is a subject of future research.

Example 1. A wide class tumour growth models based on multiphase mixture theory [6]
contain a coupled system of a conserved variable and corresponding advecting velocity. For
instance consider an in vivo model developed by S. J. Franks et al. [29] that depicts ductal
carcinoma in situ – the initial stage of breast cancer. In two spatial dimensions, the model
describes the evolution of an advancing tissue in a cylindrical domain with rigid walls, see
Figure 6.1.

0 1

0

ℓ

x

y

advancing
tumour

Figure 6.1: Advancing tumour in the duct (0,1)× (0, ℓ)

To keep the discussion simple, we consider the model with simplified kinetics, wherein
the viscosity, denoted by µ, inside and outside the tumour is assumed to be uniform and
divergence of the velocity field is assumed to depend only on nutrient concentration. The
domain of tumour growth is denoted by Ω = {xxx := (x,y) : 0≤ x≤ 1, 0≤ y ≤ ℓ}. Here, x is
the radial distance, y is the axial distance, and ℓ > 2 is the duct length. For T <∞, the
time–space domain is denoted by ΩT = (0,T )×Ω and t ∈ (0,T ) is the time variable. Model
variables are the concentration of the tumour cells α(t,xxx), the velocity of the tumour cells
uuu(t,xxx) := (u(t,xxx),v(t,xxx)), pressure inside the tumour p(t,xxx), and the nutrient concentration
c(t,xxx). The model seeks a four tuple (α,p,uuu,c) such that, in ΩT it holds

tumour cell concetration
{
∂α

∂t
+div(uuuα) = γα(1− c), (6.5a)

velocity−pressure system

 −µ
(

∆uuu+ 1
3
∇(div(uuu))

)
+∇p = 000,

div(uuu) = γ(1− c), and
(6.5b)

nutrient concentration
{
−∆c=Qα, (6.5c)

with appropriate boundary conditions. In (6.5a), γ is a positive constant that controls the
rate of cell division and in (6.5c), Q is a positive constant that controls the nutrient intake
by the cells.
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Example 2. Another example is the two–phase tumour spheroid growth problem, see
Chapter 5, where the velocity of the tumour cells uuu is governed by

−div
(
µα(∇uuu+(∇uuu)T )+λαdiv(uuu)I2

)
+∇p =−∇

(
(α−α∗)+

(1−α)2

)
and

−div
(1−α
kα
∇p

)
+div(uuu) = 0,


where µ and λ are the viscosity coefficients, k is the traction coefficient, α∗ is a positive
parameter that controls intra–cellular attraction, p is the pressure, I2 is the 2×2 identity
tensor, and α evolves with respect to (6.1) with a nonlinear source function in α.

An interesting non-biological example is the compressible magento–hydrodyanic sys-
tem. P. Chandrashekar and C. Klingenberg has studied finite volume solutions of this
system in [76] and several numerical examples are presented. To show that a possible limit
of discrete solutions obtained from a finite volume scheme applied to (6.1) satisfies (6.5) and
hence to prove the existence of a solution, we need to establish that the discrete solutions
converge to the limit in strong Lp–norm, where p≥ 1. Otherwise, it becomes challenging,
and perhaps infeasible, to apply pass to the limit arguments on functions of α appearing
in (6.5). A possible way to obtain strong Lp–norm convergence is to show that the discrete
solutions have uniform BV and invoke Helly’s selection theorem (Theorem I of Section 1.4)
to extract a strongly converging subsequence.

6.3 Main results
Four main results are presented in this chapter. The first three results establish uniform
bounded variation estimates in space and time for

• conservation laws in two spatial dimensions of the form ∂tα+ div(uuuf(α)) = 0 in
Theorem 6.4.
• conservation laws in two spatial dimensions with fully nonlinear flux of the form
∂tα+div(FFF (t,xxx,α)) = 0 in Theorem 6.9.
• conservation laws in three spatial dimensions of the form ∂tα+div(uuuf(α)) = 0 in

Theorem 6.48.

The fourth main result, see Theorem 6.24, presented in Section 6.8 applies Theorem 6.4 to
establish the existence of a weak solution to the practical problem of interest (6.5).

6.3.1 Preliminaries

Definition 6.1. A function β ∈ L1(A), where A is an open set in Rd with d≥ 1, is of BV
if |β|BVxxx(A) <∞, where

|β|BVxxx(A) := sup
{�

A
β div(φφφ)dxxx : φφφ ∈ C 1

c (A;Rd), |φφφ|L∞(A) ≤ 1
}
.
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The space BVxxx(A) is the vector space of functions β ∈ L1(A) with BV . Recall that
in this chapter ΩT = (0,T )×Ω, where Ω = (a,b)× (c,d). Then, define the following BV
seminorms for a function β : ΩT → R:

|β(t, ·)|L1
yBVx

:=
�

J
|β(t, ·,y)|BVx(I) dy, |β(t, ·)|L1

xBVy
:=

�
I
|β(t,x, ·)|BVy(J) dx,

|β(t, ·)|BVx,y := |β(t, ·)|L1
yBVx

+ |β(t, ·)|L1
xBVy

,

|β|L1
t BVx,y

:=
� T

0
|β(t, ·)|BVx,y dt, |β|L1

x,yBVt
:=

�
Ω
|β(·,x,y)|BVt(0,T ) dxdy, and

|β|BVx,y,t := |β|L1
x,yBVt

+ |β|L1
t BVx,y

. (6.6)

Also, define the following norms for a function v :XT →Rd (d≥ 1), where XT := (0,T )×X:

∥v∥L1
t L∞(XT ) :=

� T

0
∥v(t, ·)∥L∞(X) dt and ∥v∥L∞

t L1(XT ) := sup
0<t<T

∥v(t, ·)∥L1(X).

For a function β : (a,b)→ R, define the total variation by TV(β) := supP
∑I

i=0 |β(xi+1)−
β(xi)|, where P := {a= x0, . . . ,xI+1 = b} is any partition of (a,b). It is a classical result
that |β|BVx(a,b) = TV(β) [111, Appendix A].

Definition 6.2 (two dimensional admissible grid). Let Xk :=
{
x−1/2, . . . ,xI+1/2

}
and Yh :={

y−1/2, . . . ,yJ+1/2
}
, where x−1/2 = a, xI+1/2 = b, y−1/2 = c, yJ+1/2 = d, ki = xi+1/2−xi−1/2,

hj = yj+1−yj−1/2, h= maxihi, and k= maxj kj. The Cartesian grid Xk×Yh is said to be a
two dimensional admissible grid if for a fixed constant c̃ > 0, it holds that c̃−1≤ hj

ki
≤ c̃ ∀i, j.

If ki = k ∀ i and hj = h ∀j, then Xk×Yh is called a uniform Cartesian grid and otherwise
a nonuniform Cartesian grid, see Figure 6.2.

We assume that (AS.1)–(AS.3) below hold.

(AS.1) The flux f : R→ R and the numerical flux g : R2→ R are Lipschitz continuous
with Lipschitz constants Lip(f) and Lip(g), respectively.

(AS.2) The numerical flux g is monotonically nondecreasing in the first variable and
nonincreasing in the second variable, and satisfies g(a,a) = f(a) ∀a ∈ R.

(AS.3) There exists a constant C ≥ 0 such that

max
(
||uuu||L1

t L∞(ΩT ), ||∇uuu||L1
t L∞(ΩT ), |div(uuu)|L1

t BVx,y

)
≤ C <∞.

6.3.2 Presentation of the numerical scheme
Define the spatial discretisation factor hmax by hmax = maxi,j {ki,hj}, which quantifies the
size of the Cartesian grid Xk×Yh. Let Tδ defined by Tδ := {t0, . . . ,TN} be a discretisation
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xi−1/2 xi+1/2x−1/2 xI+1/2

yj−1/2

yj+1/2

yJ+1/2

y−1/2

αn
i,j

b

bb

b

un
i−1/2,j un

i+1/2,j

vni,j−1/2

vni,j+1/2

ki

hj

Figure 6.2: Rectangular grid and locations of the velocities and discrete unknowns αn
i,j .

of (0,T ), where t0 = 0 and tN = T . Define the temporal discretisation factor by δ= maxn δn,
where δn = tn+1− tn. For technical simplicity a uniform temporal discretisation is taken,
wherein δn = δ ∀n. However, note that the results in this chapter hold with a nonuniform
temporal discretisation also.

Integrate (6.1) over (tn+1, tn)×Kij , where Kij = (xi−1/2,xi+1/2)× (yj−1/2,yj+1/2),
and apply the divergence theorem to obtain

0 =
� tn+1

tn

�
Kij

∂tαdxxxdt+
� tn+1

tn

�
∂Kij

f(α)(u,v) ·nnnij dsdt=: I1 +I2, (6.7)

where nnnij is the outward unit normal to ∂Kij and uuu= (u,v). Replace I1 by the difference
formula kihj(αn+1

i,j −αn
i,j). Term I2 in (6.7) is approximated by the numerical flux g :R2→R

as δhj(Fn
i+1/2,j−Fn

i−1/2,j)+ δki(Gn
i,j+1/2−Gn

i,j−1/2), where

Fn
i−1/2,j :=

(
un+

i−1/2,jg(α
n
i−1,j ,α

n
i,j)−un−

i−1/2,jg(α
n
i,j ,α

n
i−1,j)

)
,

Gn
i,j−1/2 :=

(
vn+

i,j−1/2g(α
n
i,j−1,α

n
i,j)−vn−

i,j−1/2g(α
n
i,j ,α

n
i,j−1)

)
, (6.8)

a+ = max(a,0), and a− =−min(a,0) for a ∈ R,

un
i−1/2,j =

 tn+1

tn

 yj+1/2

yj−1/2

u(t,xi−1/2, s)dsdt and vn
i,j−1/2 =

 tn+1

tn

 xi+1/2

xi−1/2

v(t,s,yj−1/2)dsdt,

where
�

A is the averaging integral over the set A. Locations of the discrete unknowns αn
i,j ,

velocities ui−1/2,j and vi,j−1/2 in a two dimensional admissible grid is shown in Figure 6.2.
A substitution of approximations of I1 and I2 in (6.7) leads to

αn+1
i,j = αn

i,j−µi(Fn
i+1/2,j−Fn

i−1/2,j)−λj(Gn
i,j+1/2−Gn

i,j−1/2), (6.9a)
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where µi = δ/ki and λj = δ/hj . We set the discrete initial data as follows

α0
i,j :=

 
Ki,j

α0(xxx)dxxx. (6.9b)

The terms Fn
i,j and Gn

i,j can be expressed as, for s ∈ {−1,1},

Fn
i+s/2,j = Mx

i+s/2,j

[
(1− s)

2
(
αn

i−1,j−αn
i,j

)
+ (1+ s)

2
(
αn

i,j−αn
i+1,j

)]
(6.10a)

+un
i+s/2,jf(αn

i,j) and

Gn
i,j+s/2 = My

i,j+s/2

[
(1− s)

2
(
αn

i,j−1−αn
i,j

)
+ (1+ s)

2
(
αn

i,j−αn
i,j+1

)]
(6.10b)

+vn
i,j+s/2f(αn

i,j),

where

Mx
i−1/2,j :=

[
un+

i−1/2,j Dn
i,j(αn

i−1,j ,α
n
i,j)+un−

i−1/2,j Dn
i,j(αn

i,j ,α
n
i−1,j)

]
,

My
i,j−1/2 :=

[
vn+

i,j−1/2 Dn
i,j(αn

i,j−1,α
n
i,j)+vn−

i,j−1/2 Dn
i,j(αn

i,j ,α
n
i,j−1)

]
,

and the difference quotient Dn
i,j : R2→ R is defined by

Dn
i,j(a,b) =


g(a,b)−g(αn

i,j ,α
n
i,j)

a− b
if a ̸= b, and

0 if a= b.

Observe that Dn
i,j(αn

i−1,j ,α
n
i,j),Dn

i,j(αn
i,j ,α

n
i−1,j),Dn

i,j(αn
i,j ,α

n
i,j−1), and Dn

i,j(αn
i,j−1,α

n
i,j),

(hence, Mx
i−1/2,j and My

i,j−1/2) are nonnegative due to the monotonicity of g. Use (6.10a)
and (6.10b) to transform the right hand side of (6.9a) into a convex linear combination of
the terms αn

l,m, where (l,m) ∈ {(i, j),(i−1, j),(i+ 1, j),(i, j+ 1),(i, j−1)}, and this yields
an alternate form of the discrete scheme (6.9a)

αn+1
i,j = αn

i,j

(
1−µiMx

i+1/2,j−λjMy
i,j+1/2−µiMx

i−1/2,j−λjMy
i,j−1/2

)
+αn

i+1,jµiMx
i+1/2,j +αn

i,j+1λjMy
i,j+1/2 +αn

i−1,jµiMx
i−1/2,j +αn

i,j−1λjMy
i,j−1/2

−f(αn
i,j)

� tn+1

tn

 
Ki,j

div(uuu)(t,xxx)dtdxxx

 . (6.11)

Definition 6.3 (Time–reconstruct). For a sequence of functions (fn){n≥0}, where fn :X→
R, define the corresponding time–space reconstruct fh,δ : (0,T )×X→R almost everywhere
in time by f(t, ·) := fn(·) for every t ∈ (tn, tn+1).

The function αh,δ : ΩT → R is the time–space reconstruct corresponding to the se-
quence of functions (αn

h,k){n≥0}, where αn
h,k(xxx) := αn

i,j on Ki,j .
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Theorem 6.4 (bounded variation). Let Xk ×Yh be a two–dimensional admissible grid,
and assumptions (AS.1)–(AS.3) and the Courant–Friedrichs–Lewy (CFL) condition

4δmax
i,j

(
1
ki

+ 1
hj

)
Lip(g)||uuu||L∞(ΩT ) ≤ 1

hold. If α0 ∈ L∞(Ω)∩BVxxx(Ω), then αh,δ satisfies |αh,δ|BVx,y,t ≤ CBV, where CBV depends
on T , α0, f , g, ||∇uuu||L1

t L∞(ΩT ), and |div(uuu)|L1
t BVx,y

.

Remark 6.5 (Boundedness constant CBV). The exact dependency of CBV on the factors
T , α0, and Lipschitz continuity of fluxes is obtained from the proofs of Propositions 6.7
and 6.8. The final expression for CBV is described by

CBV ≤ TBuuuBα,uuu

(
1+4Lip(g)

� T

0
||uuu||L∞(Ω) dt

)
+(Lip(f)αM +f0)||div(uuu)||L1(ΩT ),

where C := max(Lip(f)αM +f0,3Lip(f)+4Lip(g)(c̃+1)+1), Buuu :=
exp

(
C ∥∇uuu∥L1

t L∞(ΩT )
)
, Bα,uuu := |α0|BVx,y + C ||div(uuu)||L1

t BVx,y
, and f0 := f(0). How-

ever, the precise form of CBV has little impact on compactness arguments used to extract
a strongly convergent subsequence from the family of time–space functions {αh,δ} – for
this purpose it is sufficient to bound |αh,δ|BVx,y,t by a global constant independent of the
discretisation factors.

Assumptions (AS.1), (AS.2), and the boundedness of ||uuu||L1
t L∞(ΩT ) described

by (AS.3) are classical in the literature (see [105, p. 153] and [75, p. 130] for more de-
tails). The crucial assumptions of Theorem 6.4 are the boundedness of (a) ||∇uuu||L1

t L∞(ΩT )
and (b) |div(uuu)|L1

t BVx,y
described by (AS.3). Condition (a) is expected since a conventional

assumption in estimating BV seminorms of finite volume approximations of nonlinear con-
servation laws of the form (6.1) is that uuu ∈ C 1(Rd×R+) [105, 75], which yields (a) on
compact subsets of Rd×R+. Though (b) apparently seems to be restrictive, it is pivotal
in bounding the difference of div(uuu) between two control volumes (see (6.29)). Indeed, we
can relax this assumption to div(uuu) ∈ L1

tL
∞(ΩT ), which is the formally correct choice and

is used in the seminal work [77] by DiPerna and Lions. However, with this less restric-
tive assumption, Proposition II.1 in DiPerna and Lions [77] only guarantees the existence
of a weak solution α ∈ L∞

t L
1(ΩT ). Therefore, (b) is justified for establishing a stronger

convergence of the finite volume solutions and the higher BV regularity of the limiting
solution.

In the one–dimensional case, the regularity of the advection velocity can be slightly
relaxed. Adimurty et al. has studied conservation laws of the form ut +∂xf(k(x),u) = 0,
where k is a piecewise smooth function with finitely many discontinuities and f is C 1,1

with respect to k and Lipschitz with respect to u [78]. Similar results and BV estimates
on finite volume solutions has been presented in the works [79–82].
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6.4 Proof of Theorem 6.4
We let the hypotheses of Theorem 6.4 to hold throughout the sequel of this chapter and
recall that αh,δ is the time–reconstruct in the sense of Definition 6.3. The proof of Theo-
rem 6.4 is accomplished through three steps: establish the

• boundedness of αh,δ in Proposition 6.6,
• spatial BV estimate of αh,δ in Proposition 6.7, and
• temporal BV estimate of αh,δ in Proposition 6.8.

Proposition 6.6 (boundedness). The function αh,δ satisfies, for every 0≤ t≤ T ,∣∣∣αh,δ(t, ·)
∣∣∣
L∞(Ω)

≤ Bf,uuu

(
∥α0∥L∞(Ω) +f0∥div(uuu)∥L1

t L∞(ΩT )
)
, (6.13)

where Bf,uuu := exp
(
Lip(f)∥div(uuu)∥L1

t L∞(ΩT )
)
, and f0 = f(0).

Proof. The Lipschitz continuity of the function g yields |Mx
i−1/2,j | ≤ Lip(g)|un

i−1/2,j | and
|My

i,j−1/2| ≤ Lip(g)|vn
i,j−1/2| for i = 0, . . . , I and j = 0, . . . ,J . The CFL condition in Theo-

rem 6.4 ensures that the coefficient of αn
i,j in (6.11) is nonnegative. Use the properties of

convex linear combination of {αn
l,m}, where (l,m) ∈ {(i, j−1),(i, j+ 1),(i−1, j),(i+ 1, j)}

in (6.11) and the Lipschitz continuity of f to obtain

sup
i,j

∣∣∣αn+1
i,j

∣∣∣≤ sup
i,j

∣∣∣αn
i,j

∣∣∣[1+Lip(f)
� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt
]

+f0

� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt. (6.14)

An application of induction on (6.14) with n as the index and (6.9b) yield (6.13).

Proposition 6.7 (spatial variation). The function αh,δ satisfies

|αh,δ(t, ·)|BVx,y ≤ Buuu(|α0|BVx,y +C |div(uuu)|L1
t BVx,y

)

for every 0≤ t≤ T , where Buuu := exp
(
C ∥∇uuu∥L1

t L∞(ΩT )
)

and C is defined in Remark 6.5.

The proof of Proposition 6.7 is achieved in five intermediate steps, which are as follows.

Step 1 Write the difference αn+1
i,j −α

n+1
i−1,j as αn+1

i,j −α
n+1
i−1,j := αn

i,j−αn
i−1,j−Hi,j−Ji,j ,

where Hi,j collects the variation of αn
i,j in x–direction and Ji,j the variation of

αn
i,j in y–direction.

Step 2 Use the intermediate nodal fluxes (see Figure 6.4) to transform the vertical
differences in Ji,j into horizontal differences.
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Step 3 Use Step 1 and Step 2 to write αn+1
i,j − αn+1

i−1,j as a sum of
(a) convex linear combinations of αn

i,j − αn
l,m, where (l,m) ∈

{(i, j−1),(i, j+1),(i−1, j),(i+1, j)} and (b) the variations of ∂xu and
∂yv (recall that uuu= (u,v)).

Step 4 Estimate the variations of ∂xu and ∂yv in terms of the BV seminorm of div(uuu).

Step 5 Combine the estimates from Step 3 and Step 4 to bound |αh,δ(tn+1, ·)|BVx,y in
terms of |αh,δ(tn, ·)|BVx,y and |div(uuu)|L1

t BVx,y
(see (6.31a)) and apply induction

on n to obtain the desired conclusion.

Proof. Step 1: Consider the difference between the scheme (6.9a) written for αn+1
i,j and

αn+1
i−1,j

αn+1
i,j −α

n+1
i−1,j = αn

i,j−αn
i−1,j−

[
µi(Fi+1/2,j−Fi−1/2,j)−µi−1(Fi−1/2,j−Fi−3/2,j)

]
−
[
λj(Gi,j+1/2−Gi,j−1/2)−λj(Gi−1,j+1/2−Gi−1,j−1/2)

]
=: αn

i,j−αn
i−1,j−Hi,j−Ji,j . (6.15)

The term Hi,j gathers the variation in the x–direction; use (6.10a) to rewrite Hi,j as

Hi,j = µiMx
i−1/2,j

(
αn

i,j−αn
i−1,j

)
+µiMx

i+1/2,j

(
αn

i,j−αn
i+1,j

)
+µi−1Mx

i−1/2,j

(
αn

i,j−αn
i−1,j

)
+µi−1Mx

i−3/2,j

(
αn

i−2,j−αn
i−1,j

)
+Kf

i,j , (6.16a)

where

Kf
i,j := f(αn

i,j)
� tn+1

tn

 
Ki,j

∂xu(t,xxx)dxxxdt−f(αn
i−1,j)

� tn+1

tn

 
Ki−1,j

∂xu(t,xxx)dxxxdt. (6.16b)

Step 2: The goal of this step is to transform the horizontal difference of variations

αn
i,j

vni,j+1/2

b
g+i,j+1/2

xi+1/2xi−1/2

yj+3/2

yj−1/2

yj+1/2

αn
i,j+1

(a)

αn
i,j

vni,j+1/2
b

g−i,j+1/2

xi+1/2xi−1/2

yj+3/2

yj−1/2

yj+1/2

αn
i,j+1

(b)

Figure 6.3: Spatial locations of the numerical fluxes g+
i,j+1/2 and g−

i,j+1/2.

between the vertical levels (i−r,j+s) and (i−r,j−s), where (r,s)∈ {(0,1/2),(−1,−1/2)}
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appearing in Ji,j of (6.15) so that the resulting terms can be combined to form a convex
linear combination of differences of αh,δ(tn, ·) between neighbouring rectangles. Define
g+

i,j+1/2 := g(αn
i,j ,α

n
i,j+1) and g+

i,j+1/2 := g(αn
i,j+1,α

n
i,j). Use (6.8) to rewrite Ji,j = J+

i,j−J−
i,j ,

where

J⋆
i,j := λj

(
vn⋆

i,j+1/2g
⋆
i,j+1/2−v

n⋆
i,j−1/2g

⋆
i,j−1/2

)
−λj

(
vn⋆

i−1,j+1/2g
⋆
i−1,j+1/2−v

n⋆
i−1,j−1/2g

⋆
i−1,j−1/2

)

with ⋆ ∈ {+,−}. The numerical fluxes involved in J+
i,j and J−

i,j can be assigned with spatial
locations as in Figures 6.3(a) and 6.3(b). A re–grouping of J⋆

i,j leads to

J⋆
i,j := λj

(
vn⋆

i,j+1/2g
⋆
i,j+1/2−v

n⋆
i−1,j+1/2g

⋆
i−1,j+1/2

)
−λj

(
vn⋆

i,j−1/2g
⋆
i,j−1/2−v

n⋆
i−1,j−1/2g

⋆
i−1,j−1/2

)

=: λj (T∗
1−T∗

2) . (6.17)

Observe that J⋆
i,j/λj is the horizontal variation between differences across two vertical levels

as in Figure 6.5(a). However, this form does not yield any terms like αn
i,r−αn

p,r, where
p ∈ {i+ 1, i−1} and r ∈ {j+ 1, j, j−1}, and thereby annihilates any chance of expressing
αn+1

i,j −α
n+1
i−1,j as a linear combination of such terms, which is crucial in controlling the

growth of spatial variation over time. This problem can be fixed by considering the terms
J+

i,j and J−
i,j as vertical variations between differences across two horizontal levels, see (6.17),

as in Figure 6.5(b).
We consider horizontal difference T+

1 = vn+
i,j+1/2g(α

n
i,j ,α

n
i,j+1) −

vn+
i−1,j+1/2g(α

n
i−1,j ,α

n
i−1,j+1) for clarity. Grouping the terms appropriately yields

vn+
i,j+1/2g(α

n
i,j ,α

n
i,j+1)−vn+

i−1,j+1/2g(α
n
i−1,j ,α

n
i−1,j+1) =

(
vn+

i,j+1/2−v
n+
i−1,j+1/2

)
g(αn

i,j ,α
n
i,j+1)

+vn+
i−1,j+1/2

(
g(αn

i,j ,α
n
i,j+1)−g(αn

i−1,j ,α
n
i−1,j+1)

)
. (6.18)

Introduce an artificial nodal flux g(αn
i−1,j ,α

n
i,j+1) arising from two diagonally opposite con-

trol volumes as in Figure 6.4. The nodal flux, splitting as in (6.18), and some manipulations

bb

g+i−1,j+1/2 g+i,j+1/2

αn
i,j+1

αn
i−1,j

bg(αn
i−1,j, α

n
i,j+1)

Figure 6.4: Intermediate nodal flux connecting the fluxes on edges.

lead to

J⋆
i,j = λj

(
(vn⋆

i,j+1/2−v
n⋆
i−1,j+1/2)g⋆

i,j+1/2− (vn⋆
i,j−1/2−v

n⋆
i−1,j−1/2)g⋆

i,j−1/2
)
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+λj

[
vn⋆

i−1,j+1/2E⋆(αn
i,j ,α

n
i−1,j ,α

n
i,j+1)

(
αn

i,j−αn
i−1,j

)
−vn⋆

i−1,j−1/2E⋆(αn
i,j−1,α

n
i−1,j−1,α

n
i,j)

(
αn

i,j−1−αn
i−1,j−1

)
+vn⋆

i−1,j+1/2E−⋆(αn
i,j+1,α

n
i−1,j+1,α

n
i−1,j)

(
αn

i,j+1−αn
i−1,j+1

)
− vn⋆

i−1,j−1/2E−⋆(αn
i,j ,α

n
i−1,j ,α

n
i−1,j−1)

(
αn

i,j−αn
i−1,j

)]
, (6.19a)

where the difference quotients E⋆ : R3→ R are defined by

E⋆(a,b,c) :=


(1+⋆)(g(a,c)−g(b,c))+(1−⋆)(g(c,a)−g(c,b))

2(a− b)
if a ̸= b, and

0 if a= b.
(6.19b)

Note that the sums (1±(±)) used in (6.19b) are understood as (1±(±1)). Use the identity
a+ = a+a− to transform the differences (vn+

i,j+1/2−v
n+
i−1,j+1/2) and (vn+

i,j−1/2−v
n+
i−1,j−1/2) in

J+
i,j and combine the resulting negative parts with the corresponding negative parts in J−

i,j .
This yields(

λj(vn+
i,j+1/2−v

n+
i−1,j+1/2)g+

i,j+1/2−λj(vn+
i,j−1/2−v

n+
i−1,j−1/2)g+

i,j−1/2

)
−
(
λj(vn−

i,j+1/2−v
n−
i−1,j+1/2)g−

i,j+1/2−λj(vn−
i,j−1/2−v

n−
i−1,j−1/2)g−

i,j−1/2

)

=


g+

i,j+1/2
hj

� tn+1

tn

 xi+1/2

xi−1/2

v(t,s,yj+1/2)ds−
 xi−1/2

xi−3/2

v(t,s,yj+1/2)ds

 dt

−
g+

i,j−1/2
hj

� tn+1

tn

 xi+1/2

xi−1/2

v(t,s,yj−1/2)ds−
 xi−1/2

xi−3/2

v(t,s,yj−1/2)ds

 dt




=: Kg

i,j

+λj(vn−
i,j+1/2−v

n−
i−1,j+1/2)(g+

i,j+1/2−g
−
i,j+1/2)

−λj(vn−
i,j−1/2−v

n−
i−1,j−1/2)(g+

i,j−1/2−g
−
i,j−1/2). (6.20)

Step 3: Combine (6.15), (6.16a), (6.19a), (6.20) and re-group the terms to obtain

αn+1
i,j −α

n+1
i−1,j =

(
αn

i,j−αn
i−1,j

)
(1− ci,j)−µiMx

i+1/2,j

(
αn

i,j−αn
i+1,j

)
−µi−1Mx

i−3/2,j

(
αn

i−2,j−αn
i−1,j

)
+λj

 ∑
⋆∈{+,−}

(⋆)vn⋆
i−1,j−1/2E⋆(αn

i,j−1,α
n
i−1,j−1,α

n
i,j)

(
αn

i,j−1−αn
i−1,j−1

)

−
∑

⋆∈{+,−}
(⋆)vn⋆

i−1,j+1/2E−⋆(αn
i,j+1,α

n
i−1,j+1,α

n
i−1,j)

(
αn

i,j+1−αn
i−1,j+1

)
−λj

[
(vn−

i,j+1/2−v
n−
i−1,j+1/2)

(
g+

i,j+1/2−g
−
i,j+1/2

)
+ (vn−

i,j−1/2−v
n−
i−1,j−1/2)

(
g+

i,j−1/2−g
−
i,j−1/2

)]
−
(
Kf

i,j +Kg
i,j

)
, (6.21a)
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where ci,j := µiMx
i−1/2,j +µi−1Mx

i−1/2,j +λj

[
vn+

i−1,j+1/2E+(αn
i,j ,α

n
i−1,j ,α

n
i,j+1)

−vn+
i−1,j−1/2E−(αn

i,j ,α
n
i−1,j ,α

n
i−1,j−1)−vn−

i−1,j+1/2E−(αn
i,j ,α

n
i−1,j ,α

n
i,j+1)

+ vn−
i−1,j−1/2E+(αn

i,j ,α
n
i−1,j ,α

n
i−1,j−1)

]
. (6.21b)

Note that in (6.21b) the terms E− are nonpositive and E+ are nonnegative. This fact along
with the CFL condition ensures that 1− ci,j is nonnegative. Take absolute value on both
sides of (6.21a), multiply by hj , sum on i= 1, . . . , I and j = 0, . . . ,J , and use the condition
that uuu= 000 on ∂Ω to change the indices appropriately to obtain

J∑
j=0

hj

I∑
i=1
|αn+1

i,j −α
n+1
i−1,j | ≤

J∑
j=0

hj

I∑
i=1

∣∣∣αn
i,j−αn

i−1,j

∣∣∣(1− ci,j)
+

J∑
j=0

hj

 I∑
i=1

µi−1Mx
i−1/2,j

∣∣∣αn
i,j−αn

i−1,j

∣∣∣+ I∑
i=1

µiMx
i−1/2,j

∣∣∣αn
i,j−αn

i−1,j

∣∣∣


+
∑

∗∈{+,−}

J∑
j=0

hj

I∑
i=1

[
λjv

n∗
i−1,j+1/2(∗)E∗(αn

i,j ,α
n
i−1,j ,α

n
i,j+1)

∣∣∣αn
i,j−αn

i−1,j

∣∣∣
+ vn∗

i−1,j−1/2(−(∗)E−∗(αn
i,j ,α

n
i−1,j ,α

n
i−1,j−1))

∣∣∣αn
i,j−αn

i−1,j

∣∣∣]
+

J−1∑
j=0

hj

I∑
i=1

λj

∣∣∣vn−
i,j+1/2−v

n−
i−1,j+1

∣∣∣ ∣∣∣g(αn
i,j ,α

n
i,j+1)−g(αn

i,j+1,α
n
i,j)
∣∣∣

+
J∑

j=1
hj

I∑
i=1

λj

∣∣∣vn−
i,j−1/2−v

n−
i−1,j−1/2

∣∣∣ ∣∣∣g(αn
i,j−1,α

n
i,j)−g(αn

i,j ,α
n
i,j−1)

∣∣∣
+

J∑
j=1

hj

I∑
i=1

(∣∣∣Kf
i,j +Kg

i,j

∣∣∣) . (6.22)

The term 1− ci,j and coefficients of |αn
i,j−αn

i−1,j | in the second and third sum on the right
hand side of (6.22) add up to one, and this yields

J∑
j=0

hj

I∑
i=1

∣∣∣αn+1
i,j −α

n+1
i−1,j

∣∣∣≤ J∑
j=0

hj

I∑
i=1

∣∣∣αn
i,j−αn

i−1,j

∣∣∣
+

J−1∑
j=0

hj

I∑
i=1

λj

∣∣∣vn−
i,j+1/2−v

n−
i−1,j+1/2

∣∣∣ ∣∣∣g(αn
i,j ,α

n
i,j+1)−g(αn

i,j+1,α
n
i,j)
∣∣∣

+
J∑

j=1
hj

I∑
i=1

λj

∣∣∣vn−
i,j−1/2−v

n−
i−1,j−1/2

∣∣∣ ∣∣∣g(αn
i,j−1,α

n
i,j)−g(αn

i,j ,α
n
i,j−1)

∣∣∣
+ δ

J∑
j=1

hj

I∑
i=1

(∣∣∣Kf
i,j +Kg

i,j

∣∣∣) . (6.23)
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Use the Lipschitz continuity of the negative part a→ a− (with constant 1) and g, the Lip-
schitz continuity of v in the x–direction, and the grid regularity condition of Definition 6.2
to obtain

λj

∣∣∣vn−
i,j−1/2−v

n−
i−1,j−1/2

∣∣∣ ∣∣∣g(αn
i,j−1,α

n
i,j)−g(αn

i,j ,α
n
i,j−1)

∣∣∣≤
c̃
∣∣∣αn

i,j−αn
i,j−1

∣∣∣Lip(g)
� tn+1

tn

∥∂xv(t, ·)∥L∞(Ω) dt. (6.24)

Step 4: Apply (1.1a) on Kg
i,j (see (6.20)) to obtain

Kg
i,j =

g+
i,j+1/2−g

+
i,j−1/2

2hj

� tn+1

tn

 xi+1/2

xi−1/2

v(t,s,yj+1/2)ds−
 xi−1/2

xi−3/2

v(t,s,yj+1/2)ds

 dt

+
� tn+1

tn

 xi+1/2

xi−1/2

v(t,s,yj−1/2)ds−
 xi+1/2

xi−3/2

v(t,s,yj−1/2)ds

dt


+
g+

i,j+1/2 +g+
i,j−1/2

2

� tn+1

tn

 
Ki,j

∂yv(t, ·)dxxxdt−
� tn+1

tn

 
Ki−1,j

∂yv(t, ·)dxxxdt


=: Kg,1

i,j +Kg,2
i,j .

Write the term Kf
i,j (see (6.16b)) as

Kf
i,j =

f(αn
i,j)

� tn+1

tn

 
Ki,j

div(uuu)(t, ·)dxxxdt−f(αn
i−1,j)

� tn+1

tn

 
Ki−1,j

div(uuu)(t, ·)dxxxdt


−

f(αn
i,j)

� tn+1

tn

 
Ki,j

∂yv(t, ·)dxxxdt−f(αn
i−1,j)

� tn+1

tn

 
Ki−1,j

∂yv(t, ·)dxxxdt


=: Kf,1

i,j +Kf,2
i,j .

Use the Lipschitz continuity of g, the Lipschitz continuity of v in the x–direction, and
Definition 6.2 to obtain

|Kg,1
i,j | ≤ c̃Lip(g)

(
|αn

i,j−αn
i,j−1|+ |αn

i,j+1−αn
i,j |
)� tn+1

tn

||∂xv(t, ·)||L∞(Ω) dt. (6.25)

A use of (1.1a) on Kf,1
i,j yields

Kf,1
i,j =

f(αn
i,j)−f(αn

i−1,j)
2

� tn+1

tn

 
Ki,j

div(uuu)(t, ·)dxxxdt+
� tn+1

tn

 
Ki−1,j

div(uuu)(t, ·)dxxxdt


+
f(αn

i,j)+f(αn
i−1,j)

2

� tn+1

tn

 
Ki,j

div(uuu)(t, ·)dxxxdt−
� tn+1

tn

 
Ki−1,j

div(uuu)(t, ·)dxxxdt

 ,
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Therefore, |Kf,1
i,j | can be bounded by

|Kf,1
i,j | ≤ Lip(f)|αn

i,j−αn
i−1,j |

� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt

+(Lip(f)αM +f0)
� tn+1

tn

∣∣∣∣∣∣
 

Ki,j

div(uuu)(t, ·)dxxx−
 

Ki−1,j

div(uuu)(t, ·)dxxx

∣∣∣∣∣∣ dt. (6.26)

The sum Kg,2
i,j +Kf,2

i,j can be written as

Kg,2
i,j +Kf,2

i,j =
−2f(αn

i,j)+g+
i,j+1/2 +g+

i,j−1/2
2

� tn+1

tn

 
Ki,j

∂yv(t, ·)dxxxdt

+
2f(αn

i−1,j)−g+
i,j+1/2−g

+
i,j−1/2

2

� tn+1

tn

 
Ki−1,j

∂yv(t, ·)dxxxdt. (6.27)

The Lipschitz continuity of g and f and g(a,a) = f(a) yield

|−2f(αn
i,j)+g+

i,j+1/2 +g+
i,j−1/2| ≤ Lip(g)|αn

i,j−αn
i,j−1|+Lip(g)|αn

i,j−αn
i,j+1|, (6.28a)

|2f(αn
i−1,j)+g+

i,j+1/2 +g+
i,j−1/2| ≤ 2Lip(f)|αn

i,j−αn
i−1,j |

+Lip(g)|αn
i,j−αn

i,j−1|+Lip(g)|αn
i,j−αn

i,j+1|. (6.28b)

Combine the bounds (6.25), (6.26), (6.27), (6.28a), and (6.28b) to obtain

|Kf
i,j +Kg

i,j | ≤ |K
f,1
i,j |+ |K

g,1
i,j |+ |K

f,2
i,j +Kg,2

i,j |

≤ Lip(f)|αn
i,j−αn

i−1,j |
(� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt+2
� tn+1

tn

||∂yv(t, ·)||L∞(Ω) dt
)

+Lip(g)
(
|αn

i,j−αn
i,j−1|+ |αn

i,j+1−αn
i,j |
)(
c̃

� tn+1

tn

(
||∂xv(t, ·)||L∞(Ω) +2||∂yv(t, ·)||L∞(Ω)

)
dt
)

+(Lip(f)αM +f0)
� tn+1

tn

∣∣∣∣∣∣
 

Ki,j

div(uuu)(t, ·)dxxx−
 

Ki−1,j

div(uuu)(t, ·)dxxx

∣∣∣∣∣∣ dt. (6.29)

Step 5: Use (6.23), (6.24), and (6.29) to obtain

|αh,δ(tn+1, ·)|L1
yBVx

≤ |αh,δ(tn, ·)|L1
yBVx

+4(c̃+1) Lip(g)|αh,δ(tn, ·)|L1
xBVy

� tn+1

tn

||∇uuu||L∞(Ω) dt

+3Lip(f)|αh,δ(tn, ·)|L1
yBVx

� tn+1

tn

||∇uuu||L∞(Ω) dt

+(Lip(f)αM +f0)
� tn+1

tn

|Π0
h(div(uuu))(t, ·)|L1

yBVx
dt, (6.30)
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where the piecewise constant projection Π0
h,k : BVxxx(Ω)→ BVxxx(Ω) for an admissible grid

Xk ×Yh is defined by, for β ∈ BVxxx(Ω),
(
Π0

h,k(β)
)

(xxx) :=
�

Ki,j
β dxxx ∀xxx ∈ Ki,j . A similar

argument can be obtained with i and j interchanged and when combined with (6.30) yields

|αh,δ(tn+1, ·)|BVx,y ≤ |αh,δ(tn, ·)|BVx,y

(
1+C

� tn+1

tn

||∇uuu(t, ·)||L∞(Ω) dt
)

+C

� tn+1

tn

|Π0
h,k(div(uuu))|BVx,y dt, (6.31a)

where C = max(Lip(f)αM +f0,3Lip(f)+4Lip(g)(c̃+1)+1). Apply induction on (6.31a)
with n as the index and use the fact that |Π0

h,k(div(uuu))|BVx,y ≤ |div(uuu)|BVx,y to obtain

|αh,δ(tn, ·)|BVx,y ≤ Buuu

(
|αh,δ(t0, ·)|BVx,y +C

� T

0
|div(uuu)|BVx,y dt

)
. (6.31b)

The desired conclusion follows from (6.31b) and (6.9b).
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Figure 6.5: Differences between horizontal and vertical levels. Here, a∗
i,j+1/2 =

vn∗
i,j+1/2g

∗
i,j+1/2, where g+

i,j+1/2 = g(αn
i,j ,α

n
i,j+1) and g−

i,j+1/2 = g(αn
i,j+1,α

n
i,j).

Proposition 6.8 (temporal variation). The function αh,δ satisfies

|αh,δ|L1
x,yBVt

≤ 4Buuu

(
|α0|BVx,y +C |div(uuu)|L1

t BVx,y

)
Lip(g)||uuu||L1

t L∞(ΩT )

+(Lip(f)αM +f0)|div(uuu)|L1(ΩT ).

The proof of Proposition 6.8 is obtained by writing αn+1
i,j −αn

i,j in terms of the differences
αn

i,j−αn
l,m, where (l,m) ∈ {(i, j−1),(i, j+1),(i−1, j),(i+1, j)} and by applying Proposi-

tion 6.7.
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Proof. Use (6.11) to write

αn+1
i,j −α

n
i,j = µiMx

i+1/2,j

(
αn

i+1,j−αn
i,j

)
+λjMy

i,j+1/2

(
αn

i,j+1−αn
i,j

)
+µiMx

i−1/2,j

(
αn

i−1,j−αn
i,j

)
+λjMy

i,j−1/2

(
αn

i,j−1−αn
i,j

)
−f(αn

i,j)

� tn+1

tn

 
Ki,j

div(uuu)(t,xxx)dxxxdt

 . (6.32)

Multiply both sides of (6.32) by hjki, sum over n = 0, . . . ,N , i = 0, . . . , I and j = 0, . . . ,J ,
and use the homogeneous boundary condition on uuu to obtain

J∑
j=0

I∑
i=0

hjki

N∑
n=0
|αn+1

i,j −αn
i,j | ≤

N∑
n=0

δ
J∑

j=0
hj

I−1∑
i=0

Mx
i+1/2,j |α

n
i+1,j−αn

i,j |

+
N∑

n=0
δ

I∑
i=0

ki

J−1∑
j=0

My
i,j+1/2|α

n
i,j+1−αn

i,j |+
N∑

n=0
δ

J∑
j=0

hj

I∑
i=1

Mx
i−1/2,j |α

n
i−1,j−αn

i,j |

+
N∑

n=0
δ

I∑
i=0

ki

J∑
j=1

My
i,j−1/2|α

n
i,j−1−αn

i,j |+
J∑

j=0

I∑
i=0

N∑
n=0

f(αn
i,j)
(� tn+1

tn

�
Ki,j

div(uuu)(t,xxx)dxxxdt

)
. (6.33)

Use the Lipschitz continuity of the functions f and g and (6.33) to obtain
�

Ω
|αh,δ(·,x,y)|BVt(0,T ) dxdy ≤ 4Lip(g)

� T

0
||uuu(t, ·)||L∞(Ω)|αh,δ(t, ·)|BVx,y dt

+(Lip(f)αM +f0)||div(uuu)||L1(ΩT ). (6.34)

Use (6.34) and Proposition 6.7 to arrive at the desired result.

Theorem 6.4 follows from Propositions 6.7, 6.8, and (6.6). The homogeneous source
term in (6.1) can be replaced with a function S(t,xxx,α) that satisfies the assumption:

(AS.4) S ∈ L1
tL

∞(ΩT ) and S(t,xxx,z) is Lipschitz continuous with respect to z (with
constant Lipz(S)), uniformly with respect to t and xxx, and is Lipschitz continuous
with respect to xxx (with constant Lipxxx(S)), uniformly with respect to t and z.

In this case, we obtain the following corollary to Theorem 6.4.

Corollary 1. Let (AS.1)– (AS.4) and the Courant–Friedrichs–Lewy (CFL) condition

4δmax
i,j

(
1
ki

+ 1
hj

)
Lip(g)||uuu||L∞(ΩT ) ≤ 1

hold. If α0 ∈ L∞(Ω)∩BVxxx(Ω) then, the time–reconstruct αh,δ : ΩT →R reconstructed from
the values αn

i,j obtained from the scheme

αn+1
i,j = αn

i,j−µi(Fi+1/2,j−Fi−1/2,j)−λj(Gi,j+1/2−Gi,j−1/2)+
� tn+1

tn

 
Ki,j

S(t,xxx,αn
i,j)dtdxxx
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satisfies |αh,δ|BVx,y,t ≤ CBV, where CBV depends on T , α0, f , g, ||∇uuu||L1
t L∞(ΩT ),

|div(uuu)|L1
t BVx,y

, Lipxxx(S), Lipz(S), and |S|L1
t BVx,y

.

Proof. It is enough to estimate variation of the source term in the x direction, which can
be written as

Vi,j :=
� tn+1

tn

 
Ki,j

S(t,xxx,αn
i,j)dtdxxx−

� tn+1

tn

 
Ki−1,j

S(t,xxx,αn
i−1,j)dtdxxx. (6.35)

Add and subtract
� tn+1

tn

�
Ki,j

S(t,xxx,αn
i−1,j)dtdxxx to (6.35) and group the terms appropriately

to obtain

|Vi,j | ≤
� tn+1

tn

 
Ki,j

∣∣∣S(t,xxx,αn
i,j)−S(t,xxx,αn

i−1,j)
∣∣∣ dtdxxx

+
� tn+1

tn

∣∣∣∣∣∣
 

Ki,j

S(t,xxx,αn
i−1,j)dxxx−

 
Ki−1,j

S(t,xxx,αn
i−1,j)dxxx

∣∣∣∣∣∣ dt=: V1 +V2. (6.36)

Use the Lipschitz continuity of S with respect to the third argument to bound V1 by
δLipz(S)|αn

i,j−αn
i−1,j |. Sum (6.36) for i= 1, . . . , I to obtain

I∑
i=1
|Vi,j | ≤ δLipz(S)|αh,δ(tn, ·)|BVx +Lipxxx(S)

� tn+1

tn

∣∣∣Π0
h(S)

∣∣∣
BVx

dt. (6.37)

Rest of the proof follows by adding the terms in the right hand side of (6.37) to the right
hand side of (6.30) and by following the steps from there on.

6.5 BV estimate for conservation laws with fully non-
linear flux

Several practical problems presents a nonlinear flux dependent on time, space, and the con-
served variable. Continuous sedimentation problems [83] and oil reservoir simulations [84]
are examples of such systems. Theorem 6.4 can be extended to the case with fully nonlinear
flux such as

∂tα+div(FFF (t,xxx,α)) = 0 in ΩT and
α(0, ·) = α0 in Ω.

}
(6.38)

The strong BV estimate on finite volume schemes for (6.38) on square Cartesian grids
is obtained by C. Chainais-Hilairet [75] under the assumption that divxxx(FFF ) = 0. In this
chapter, we relax this condition and obtain bounded variation estimates for α under the
following assumptions.
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(AS.5) FFF (t,xxx,z) is C 1(ΩT ×R) and is Lipschitz continuous with respect to z (with con-
stant Lip(FFF )), uniformly with respect to (t,xxx), and ∂zFFF is Lipschitz continuous
with respect to xxx (with constant Lip(∂sFFF )), uniformly with respect to t and z,

(AS.6) |divxxx(FFF )|L1
t BVx,y

<∞ and divxxx(FFF ) is Lipschitz continuous with respect to z (with
constant constant Lip(divxxx(FFF ))), uniformly with respect to t and xxx.

Use (AS.5) to write the flux FFF as FFF := (F1,F2), F1 =A+B, and F2 = C+D, where
A and C are monotonically nondecreasing and B and D are monotonically nonincreasing
in z, uniformly with respect to t and xxx. In this case, we can set the following finite volume
scheme on an admissible grid Xh×Yk:

αn+1
i,j = αn

i,j−
1
ki

(
an

i+1/2,j(α
n
i,j)−an

i−1/2,j(α
n
i−1,j)+ bni+1/2,j(α

n
i+1,j)− bni−1/2,j(α

n
i,j)
)

− 1
hj

(
cni,j+1/2(αn

i,j)− cni,j−1/2(αn
i,j−1)+dn

i,j+1/2(αn
i,j+1)−dn

i,j−1/2(αn
i,j)
)

(6.39)

with the initial condition (6.9b), where the numerical fluxes are defined, for γ ∈ {A,B},
and ϱ ∈ {C,D}, by

γn
i+1/2,j(s) =

� tn+1

tn

 yj+1/2

yj−1/2

γ(t,xi+1/2,y,s)dydt and

ϱn
i,j+1/2(s) =

� tn+1

tn

 xi+1/2

xi−1/2

ϱ(t,x,yj+1/2, s)dxdt.

Theorem 6.9 (bounded variation for fully nonlinear flux). Let the assumptions (AS.5)–
(AS.6) and the following CFL condition hold:

4δLip(FFF )max
i,j

(
1
ki

+ 1
hj

)
≤ 1.

Then the piecewise time–reconstruct αh,δ : ΩT → R re–constructed from the values αn
i,j ob-

tained from the scheme (6.39) satisfies |αh,δ|BVx,y,t(ΩT ) ≤ C , where C depends on T , α0,
|divxxx(FFF )|L1

t BVx,y
, and Lip(divxxx(FFF )).

The proof of Theorem 6.9 is based on two main ideas. Firstly, the terms in the scheme (6.39)
are re–arranged and grouped appropriately so that the term

� tn

tn

�
Ki,j

divxxx(FFF )(t,xxx,αn
i,j)dxxxdt

can be separately estimated (see (6.41)). Secondly, we employ the Lipschitz continuity of
divxxx(FFF ) to bound difference of the terms {

� tn+1
tn

�
Kl,j

divxxx(FFF )(t,xxx,αn+1
l,j )dxxxdt : l = i, i+1}

by the BV seminorms
� tn+1

tn
|αh,δ(t, ·)|BVx dt and

� tn+1
tn
|divxxx(FFF )(t, ·, ·)|BVx dt.

Proof. The scheme (6.39) can be expressed as

αn+1
i,j =


αn

i,j−∆1,n
i,j (αn

i,j ,α
n
i−1,j)(αn

i,j−αn
i−1,j)−∆2,n

i,j (αn
i,j ,α

n
i+1,j)(αn

i,j−αn
i+1,j)

− 1
hj

(
ci,j−1/2(αn

i,j)− ci,j−1/2(αn
i,j−1)+di,j+1/2(αn

i,j+1)−di,j+1/2(αn
i,j)
)

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−
( � tn+1

tn

 
Ki,j

divxxx(FFF )(t,xxx,αn
i,j)dxxxdt,

)
=: T1,i−T2,i (6.41)

where

∆1,n
i,j (p,q) =

An
i−1/2,j(p)−A

n
i−1/2,j(q)

p− q
and ∆2,n

i,j (p,q) =
Bn

i+1/2,j(p)−B
n
i+1/2,j(q)

q−p
.

It is enough to estimate |αh,δ|L1
yBVx

as we did in the proof of Proposition 6.7. Take the
difference between the scheme (6.41) written for αn+1

i+1,j and αn+1
i,j . The difference T1,i+1−

T1,i can be estimated exactly as in the proof of [75, Lemma 8], wherein the CFL condition
in Theorem 6.9 enables us to express αn+1

i,j − α
n+1
i−1,j as a convex linear combination of

differences at the previous time step n. Consider the difference |T2,i+1−T2,i|:

|T2,i+1−T2,i| ≤
� tn+1

tn

∣∣∣∣∣∣
 

Ki+1,j

divxxx(FFF )(t,xxx,αn
i+1,j)dxxx−

 
Ki,j

divxxx(FFF )(t,xxx,αn
i+1,j)dxxx

∣∣∣∣∣∣ dt
+
� tn+1

tn

∣∣∣∣∣∣
 

Ki,j

divxxx(FFF )(t,xxx,αn
i+1,j)dxxx−

 
Ki,j

divxxx(FFF )(t,xxx,αn
i,j)dxxx

∣∣∣∣∣∣ dt=: Q1 +Q2. (6.42)

The term Q2 can be estimated as

Q2 ≤ δ |Lip(divxxx(FFF ))| |αn
i+1,j−αn

i,j |. (6.43)

Follow the proof of [75, Lemma 8] and use (6.42) and (6.43) to obtain

|αh,δ(tn+1, ·)|BVx,y ≤ |αh,δ(tn, ·)|BVx,y (1+6δLip(∂sFFF )+ δLip(divxxx(FFF )))

+
� tn+1

tn

|Π0
h(divxxx(FFF ))|BVx,y dt.

Apply induction on the above result and use similar arguments as in the proof of Proposi-
tion 6.8 to obtain the desired result.

6.6 Numerical examples
We consider three examples to demonstrate the conclusions of Theorems 6.4 and 6.9. In
Example 6.10, we manufacture a source term such that the conservation law (6.44) has a
smooth solution. In Example 6.11, the source term is set to be zero and a discontinuous
function is chosen as the initial data, and as a result the exact solution also becomes
discontinuous. Example 6.11 helps to understand how the discontinuities in the solution
affect the growth of BV seminorm. In Example 6.12, we consider a conservation law with
fully nonlinear flux with an exact solution and illustrate the conclusions of Theorems 6.9.
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Example 6.10 (smooth solution). We consider the spatial domain Ω = (−1,1)2, temporal
domain (0,1), velocity vector field uuu= (u,v) defined by

u(t,x,y) := tsin(πx) cos(πy/2)/16 and v(t,x,y) := tsin(πy) cos(πx/2)/16,

initial data α0(x,y) := 1 ∀(x,y) ∈ Ω, and an appropriate source term S such that the
problem

∂tα+div(uuuf(α)) = S in Ω1 and
α(0,x,y) = α0(x,y) ∀(x,y) ∈ Ω,

}
(6.44)

has the unique smooth solution α(t,x,y) = exp(t(x+y)) ∀(t,x,y) ∈Ω1, where Ω1 = (0,1)×
Ω.

Example 6.11 (discontinuous solution). The spatial domain is Ω = (−3,3)2 and the tem-
poral domain is (0,2). In the case where the flux function f in (6.44) is linear, then we
set the velocity vector field uuu as (1,1) and the source term S as zero so that the prob-
lem (6.44) has the unique solution α(t,x,y) := α0(x− t,y− t). The initial data considered
is α0(x,y) = 111[x>−1/4]/2 + 111[y>−1/4]/2, where 111A is the characteristic function of the set
A. In the case where the flux function f is nonlinear, then we set the velocity vector field
uuu= (u,v) as

u(t,x,y) = sin(πx) cos(πy/2)/20 and v(t,x,y) = sin(πy) cos(πx/2)/20.

Note that in the case of nonlinear flux, the vector uuu is zero on the boundary of the square
(−3,3)2, and as a result we can take the boundary data (αuuu)|∂Ω ·nnn|∂Ω = 0, where nnn|∂Ω is
the outward normal to ∂Ω. This homogeneous boundary condition on uuu is useful since the
exact solution to the problem (6.44) with a nonlinear flux is not available. The source term
and the initial condition remain the same as in the case of linear flux.

Example 6.12 (fully nonlinear flux). The spatial and temporal domains, initial data, and
exact solution are chosen as in Example 6.10. The nonlinear conservation law considered
is

∂tα+div(sin((x− t)α), cos((y− t)α)) = SN in Ω1 and
α(0,x,y) = α0(x,y) ∀(x,y) ∈ Ω.

}
(6.45)

The source term SN is chosen such that (6.45) has the smooth solution α(t,x,y) = exp(t(x+
y)). Note that the divergence of the flux div(sin((x− t)α), cos((y− t)α)) = αcos((x− t)α)−
α sin((y− t)α) is not identically zero.

We consider two fluxes in the tests: (i) linear flux, f(s) = s and (ii) sinusoidal flux, f(s) =
sin(2πs). The numerical flux used is the Godunov flux defined by

g(a,b) =

 max
b<s<a

(f(s)) if b < a,

min
a<s<b

(f(s)) if a < b.

147



(a) hexagonal (b) triangular (c) staggered (d) Cartesian (e) pert.Cartesian

The families of meshes considered are (a) hexagonal, (b) triangular, (c) staggered, (d)
Cartesian, and (e) perturbed Cartesian (see Figures 6.6(a)–6.6(e)).
The BV and L1 rates are defined by

BV rate =
log

∣∣∣αhk+1,δk+1(T, ·)
∣∣∣
BVx,y

− log
∣∣∣αhk,δk

(T, ·)
∣∣∣
BVx,y

log(hk+1/hk)
and

L1 rate =
log

∣∣∣αhk+1,δk+1(T, ·)
∣∣∣
L1(Ω)

− log
∣∣∣αhk,δk

(T, ·)
∣∣∣
L1(Ω)

log(hk+1/hk)
.

Discretisation factors, BV norms, and BV rates corresponding to Cartesian and perturbed
Cartesian grids are presented in Tables 6.2–6.5 and Tables 6.7–6.10. The L1 errors and
L1 rates are also included whenever an exact solution is available. Arrangement of the
contents in Tables 6.2–6.10 are outlined in Table 6.1 for clarity. The BV rates corresponding
to hexagonal, triangular, and staggered are presented in Table 6.6 and Table 6.11. The
quantities L1 error and L1 rate are omitted for these three families of meshes since they
follow a trend exactly similar to that of perturbed Cartesian grids. The L1 and BV rates of
the discrete solutions obtained by applying the scheme (6.39) to Example 6.12 are provided
in Table 6.12.

Tables showing L1 and BV rates continuous flux gridExample 6.10 Example 6.11
Table 6.2 Table 6.7 linear, f(s) = s Cartesian
Table 6.3 Table 6.8 sinusoidal, f(s) = sin(2πs) Cartesian
Table 6.4 Table 6.9 linear, f(s) = s perturbed Cartesian
Table 6.5 Table 6.10 sinusoidal, f(s) = sin(2πs) perturbed Cartesian

Table 6.1: Arrangement of contents in Tables 6.2–6.5 and Tables 6.7–6.10.

The captions of Tables 6.2–6.5 and Tables 6.7–6.10 are in the following format: ex-
ample, continuous flux function, grid type.

6.6.1 Observations
We recall three classical results from the theory of convergence analysis of finite volume
schemes for conservation laws of the type (6.1).

148



(R.1) For a BV initial data, finite volume approximations of conservation laws of the
type (6.1) on structured Cartesian meshes converge with h1/2 rate with respect
to L∞

t L
1 norm [68], and this result is extended to nearly Cartesian meshes by B.

Cockburn et al. [85]. For generic meshes the L∞
t L

1 convergence rate is h1/4 [105,
p. 188].

(R.2) The BV seminorm of the finite volume solution grows with a rate not greater than
h−1/2 [105, p. 168]. Further details can be found in [85, p. 1777] and the references
therein.

(R.3) For BV initial data, finite volume approximations of nonlinear conservation laws of
the type (6.45) converge with h1/2 rate with respect to L1(ΩT ) norm (see Theorem
4 and Remark 1 in [75]).

In Tables 6.2–6.9, it can be observed that the order of convergence with respect to
the L1–norm is well above 1/4. The BV seminorm grows as h decreases indicated by the
negative values of BV rate in Tables 6.2–6.9. But the growth rate is well below −1/2
except in the case of initial coarse meshes. The trend in L1 rate is related to the trend in
BV rate. A reduced L1 rate is attributed to the fact that finite volume solutions on generic
grids lack a uniform strong BV estimate. The weak BV estimate (6.3) diminishes the L1

rate from h1/2 to h1/4 in the case of non–Cartesian meshes.
When the flux is linear, the mesh is Cartesian (uniform or nonuniform), and (6.1)

possesses a smooth solution, we obtain first order L1 rate and the BV rate decreases in
magnitude (but with oscillations), which indicates that the BV seminorm seems to not
blow up. In the case of sinusoidal flux, the L1 rate shows a slight reduction for coarse
meshes but readily becomes well above h1/2, which is the theoretical L1 rate. Here also,
BV rate decreases in magnitude but with oscillations as h decreases.

The numerical tests with perturbed Cartesian meshes also shows a similar behaviour.
The linear flux exhibits first order L1 rate and the sinusoidal flux a slightly reduced L1

rate but well above h1/2. However, the BV rate shows a steady reduction in magnitude in
both the linear and sinusoidal case. The BV rate for hexagonal, triangular, and staggered
meshes also show a steady decrease in magnitude as provided in Table 6.11.

In Example 6.11, we see a prominent reduction in the L1 rate and this is due to the
discontinuities in the weak solution to (6.1). The explicit finite volume scheme introduces
considerable numerical diffusion in the discrete solution by smearing out the sharp fronts,
thereby reducing the convergence rate. This reduction in the L1 rate is visible in both the
Cartesian and perturbed Cartesian cases (see Tables 6.7 and 6.9). The BV rate is also
decreasing in magnitude but with oscillations. In the sinusoidal flux case also BV rates
show the same pattern (see Tables 6.8 and 6.10). For other non–Cartesian meshes also the
BV rate seems to be decreasing in magnitude as presented in Table 6.11.

In the of conservation laws with fully nonlinear flux, it is clear from Table 6.12 that the
BV rate is decreasing in magnitude steadily as h decreases. This complements the uniform
BV estimates in Theorem 6.9. The L1 rate is also greater than the theoretical rate of h1/2
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h δ
error rate

BV seminorm BV rate
L1 L1

5.00E-01 2.50E-01 1.37E-01 - 2.02E+01 -
2.50E-01 1.25E-01 7.19E-02 9.30E-01 2.31E+01 -1.92E-01
1.25E-01 6.25E-02 3.82E-02 9.08E-01 3.06E+01 -4.07E-01
6.25E-02 3.12E-02 1.98E-02 9.50E-01 3.53E+01 -2.05E-01
3.12E-02 1.56E-02 1.01E-02 9.72E-01 3.79E+01 -1.03E-01

Table 6.2: Example 6.10, linear, Cartesian

h δ
error rate

BV seminorm BV rate
L1 L1

5.00E-01 3.97E-02 3.32E-02 - 2.42E+01 -
2.50E-01 1.98E-02 3.35E-02 -1.02E-02 3.20E+01 -3.99E-01
1.25E-01 9.94E-03 2.59E-02 3.71E-01 3.78E+01 -2.41E-01
6.25E-02 4.97E-03 1.64E-02 6.53E-01 4.03E+01 -9.13E-02
3.12E-02 2.48E-03 9.58E-03 7.81E-01 4.12E+01 -3.13E-02

Table 6.3: Example 6.10, sinusoidal, Cartesian

h δ
error rate

BV seminorm BV rate
L1 L1

5.70E-01 2.85E-01 1.54E-01 - 1.97E+01 -
3.01E-01 1.50E-01 8.76E-02 8.95E-01 2.71E+01 -4.99E-01
1.52E-01 7.62E-02 4.65E-02 9.26E-01 3.30E+01 -2.88E-01
8.40E-02 4.20E-02 2.61E-02 9.68E-01 3.64E+01 -1.65E-01
4.21E-02 2.10E-02 1.33E-02 9.80E-01 3.84E+01 -7.84E-02

Table 6.4: Example 6.10, linear, perturbed Cartesian

h δ
Error rate

BV seminorm BV rate
L1 L1

5.70E-01 4.54E-02 5.44E-02 - 2.42E+01 -
3.01E-01 2.40E-02 3.74E-02 5.87E-01 3.31E+01 -4.91E-01
1.52E-01 1.21E-02 2.69E-02 4.81E-01 3.73E+01 -1.75E-01
8.40E-02 6.68E-03 1.77E-02 7.06E-01 4.13E+01 -1.70E-01
4.21E-02 3.35E-03 1.01E-02 8.11E-01 4.19E+01 -1.84E-02

Table 6.5: Example 6.10, sinusoidal, perturbed Cartesian
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h
de

cr
ea

sin
g

←
−−
−−
−−
−−
−

BV rate
(linear)

BV rate
(sinusoidal)

hexagonal triangular staggered hexagonal triangular staggered
-2.49E-01 -2.43E-01 -1.46E-01 -2.39E-01
-1.62E-01 -1.26E-01 -1.77E-01 -6.87E-02 -1.27E-01 -9.39E-02
-1.04E-01 -6.79E-02 -8.83E-02 -2.41E-02 -4.01E-02 -3.10E-02
-2.62E-01 -3.80E-02 -2.59E-02 -1.28E-03 -5.11E-03 -1.13E-02

Table 6.6: Example 6.10 – Trend in the rate of BV norm for a smooth solution of (6.1).

h δ
error rate

BV seminorm BV rate
L1 L1

3.00E+00 9.37E-02 4.14E-01 - 4.26E+00 -
1.50E+00 4.68E-02 8.16E-01 -9.78E-01 5.57E+00 -3.85E-01
7.50E-01 2.34E-02 4.74E-01 7.81E-01 6.33E+00 -1.85E-01
3.75E-01 1.17E-02 3.70E-01 3.59E-01 7.69E+00 -2.80E-01
1.87E-01 5.85E-03 2.87E-01 3.66E-01 8.75E+00 -1.86E-01

Table 6.7: Example 6.11, linear, Cartesian

h δ BV seminorm BV rate

3.00E+00 1.49E-02 6.32E+00 -
1.50E+00 7.46E-03 6.35E+00 -7.31E-03
7.50E-01 3.73E-03 6.60E+00 -5.44E-02
3.75E-01 1.86E-03 6.76E+00 -3.52E-02
1.87E-01 9.32E-04 7.08E+00 -6.64E-02

Table 6.8: Example 6.11, sinusoidal, Cartesian

h δ
error rate

BV seminorm BV rate
L1 L1

3.42E+00 1.06E-01 3.98E-01 - 4.68E+00 -
1.81E+00 5.65E-02 7.24E-01 -9.38E-01 6.23E+00 -4.49E-01
9.14E-01 2.85E-02 4.61E-01 6.59E-01 6.48E+00 -5.70E-02
5.04E-01 1.57E-02 3.70E-01 3.69E-01 8.77E+00 -5.07E-01
2.53E-01 7.91E-03 2.85E-01 3.78E-01 9.51E+00 -1.17E-01

Table 6.9: Example 6.11, linear, perturbed Cartesian
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h δ BV seminorm BV rate

3.42E+00 1.06E-01 6.32E+00 -
1.81E+00 5.65E-02 6.54E+00 -4.95E-02
9.14E-01 2.85E-02 6.70E+00 -3.51E-02
5.04E-01 1.57E-02 7.57E+00 -2.05E-01
2.53E-01 7.91E-03 7.28E+00 -5.75E-02

Table 6.10: Example 6.11, sinusoidal, perturbed Cartesian

h
de

cr
ea

sin
g

←
−−
−−
−−
−−
−

BV rate
(linear flux)

BV rate
(sinusoidal flux)

hexagonal triangular square hexagonal triangular staggered
-4.32E-01 -3.90E-01 6.54E-02 -7.19E-02 -4.91E-01
-3.77E-01 -3.61E-01 -1.89E-01 -6.92E-02 1.93E-01 1.46E-01
-3.14E-01 -6.60E-02 -4.14E-02 -3.16E-02 -2.39E-02 -1.24E-01
-3.11E-01 -1.71E-01 -4.88E-03 -1.10E-03 -9.69E-03 -1.24E-04

Table 6.11: Example 6.11 – Trend in BV rate for a discontinuous solution of (6.1).

h δ
error rate

BV seminorm BV rate
L1 L1

5.00E-01 3.97E-02 1.47E-01 - 2.45E+00 -
2.50E-01 1.98E-02 1.08E-01 4.35E-01 3.58E+00 -5.43E-01
1.25E-01 9.94E-03 7.48E-02 5.40E-01 4.57E+00 -3.54E-01
6.25E-02 4.97E-03 4.74E-02 6.58E-01 5.33E+00 -2.21E-01
3.12E-02 2.48E-03 2.80E-02 7.58E-01 5.88E+00 -1.40E-01

Table 6.12: Example 6.12 – Fully nonlinear flux and Cartesian grid.

except for the initial coarse mesh (see result (R.3)). Table 6.12 also complements in [75,
Lemma 8, Theorem 4], which provide the boundedness of the BV seminorm of discrete
solutions corresponding to uniform square Cartesian grids.

Remark 6.13. The choice of the functions A, B, C, and D for the scheme (6.39) is not
arbitrary. It is crucial that A and C and nondecreasing, B and D are nonincreasing, and
the CFL condition in Theorem 6.9 holds. We use the following pairs to obtain the results
provided in Table 6.12:

A(t,x,y,z) = (sin((x− t)z)+Mz)/2, B(t,x,y,z) = (sin((x− t)z)−Mz)/2,
C(t,x,y,z) = (cos((y− t)z)+Mz)/2, D(t,x,y,z) = (cos((y− t)z)−Mz)/2,

where M = Lip(FFF ). This choice of M ensures the monotonicity conditions required by
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A, B, C, and D. Moreover, A, B, C, and D become Lipschitz continuous with Lipschitz
constant Lip(FFF ) so that the CFL condition in Theorem 6.9 holds.

6.6.2 A remark on strong BV estimate for non–Cartesian grids
In the case of Cartesian mesh, note that the BV rate decreases in magnitude as h de-
creases and the BV seminorm stabilises eventually, which agrees with the conclusion of
Theorem 6.4. This is also supported by the higher values of L1 rate than the theoretically
predicted ones and the fact that the reduced convergence rate stems from lack of a strong
BV estimate (see result (R.1)).

Similar trends can be observed in the case of perturbed Cartesian grids also. These
trends indicate that the BV bounds established here would possibly also hold for certain
non-Cartesian grids. Any such uniform estimate on strong BV immediately provides a
proof for the improved convergence rates. However, as of now any analytical proof of a
strong BV estimate on meshes other than nonuniform Cartesian grids is not available in
the literature. A strong challenge in this direction is the counterexample provided by B.
Després [86]. This article presents an analytical example that shows the BV seminorms of
finite volume solutions on a staggered grid, see Figure 6.6(c). The example consists of the
problem

∂tα+u∂xα = 0, for (x,y) ∈ (−ℓ,ℓ)2, 0< t < T
α(t,x,y) = α0(x,y) for (x,y) ∈ (−ℓ,ℓ)2,

}
(6.46)

with ℓ = 1, u = 1, and α0(x,y) = H(x−1/2), where H is the Heaviside step function may
blow up with an order greater than −1/2. This is supported by numerical experiments also.
In Table 6.13 it is evident that the BV seminorm is increasing and the rate of increase is
also growing towards the theoretical rate of h−1/2. Considering this result, the uniform
BV estimate on non–Cartesian grids needs a deeper investigation.

h δ BV seminorm BV rate

1.00E-01 1.00E-01 3.90E+00 -
5.00E-02 5.00E-02 5.65E+00 -5.36E-01
2.50E-02 2.50E-02 6.86E+00 -2.78E-01
1.25E-02 1.25E-02 9.00E+00 -3.92E-01
6.25E-03 6.25E-03 1.19E+01 -4.14E-01

Table 6.13: BV seminorms of the finite volume solutions corresponding to (6.46) on stag-
gered meshes. The parameters used are ℓ= 1 and T = 1/4.
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6.7 Extension to three spatial dimensions
An analogous result to Theorem 6.4 can be derived in a three spatial dimensional setting.
The main result in stated in Theorem 6.48. The proof is not included here since it is similar
to the proof of Theorem 6.4 and only more technical as a result of an extra spatial dimension.
A brief sketch is provided in Appendix A.2. Consider the partial differential equation on
the time–space domain Ω̂T = (0,T )×Ω̂, wherein Ω̂ := (aL,aR)×(bL, bR)×(cL, cR) described
by

∂tα+div(uuuf(α)) = 0 in Ω̂T and
α(0, ·) = α0 in Ω̂,

}

where uuu = (u,v,w). The assumptions (AS.1), (AS.2), and the condition uuu|∂Ω̂ = 000 hold. In
addition to assume (AS.3∗) below.

(AS.3∗) There exists a generic constant C ≥ 0 such that

max
(
||uuu||

L1
t L∞(Ω̂T ), ||∇uuu||L1

t L∞(Ω̂T ), |div(uuu)|L1
t BVx,y,z

)
≤ C <∞.

The temporal grid is same as in Section 6.3.2. An admissible grid on the cube, Ω̂, is defined
next.

Definition 6.14 (three dimensional admissible grid). Define the one dimensional discreti-
sations Xk :=

{
x−1/2, · · · ,xI+1/2

}
, Yh := {y−1/2, · · · ,yJ+1/2}, and Zl := {z−1/2, · · · , zL+1/2},

where x−1/2 = aL, xI+1/2 = aR, y−1/2 = bL, yI+1/2 = bR, z−1/2 = cL, zL+1/2 = cR, ki =
xi+1/2− xi−1/2, hj = yj+1− yj−1/2, lm = zm+1− zm−1/2, k := maxki, h := maxhj, and
l := max lm. The Cartesian grid Xk×Yh×Zl is said to be a three dimensional admissible
grid if the following hold: for a fixed constant c̃ > 0, (c̃)−1 ≤ hj

ki
+ ki

lm
+ lm

hj
≤ c̃ ∀i, j, l.

Define the control volumes Ki,j,m := (xi−1/2,xi+1/2) × (yj−1/2,yj+1/2) ×
(zm−1/2, zm+1/2), for 0≤ i≤ I, 0≤ j ≤ J , and 0≤m≤ L.

Definition 6.15 (three dimensional discrete solution). Set the discrete initial data as
α0

i,j,m :=
�

Ki,j,m
α0(xxx)dxxx. The three dimensional discrete solution at the time step n+ 1,

αn+1
h : Ω̂→ R, n≥ 0 is defined by αn+1

h|Ki,j,m
= αn+1

i,j,m, where

αn+1
i,j,m = αn

i,j,m−µi

(
Fx

i+1/2,j,m−Fx
i−1/2,j,m

)
−λj

(
Fy

i,j+1/2,m−Fy
i,j−1/2,m

)
−νm

(
Fz

i,j,m+1/2−Fz
i,j,m−1/2

)
, (6.47a)

where µi = δ/ki, λj = δ/hj, νm = δ/lm,

Fx
i−1/2,j,m :=

(
un+

i−1/2,j,mg(α
n
i−1,j,m,α

n
i,j,m)−un−

i−1/2,j,mg(α
n
i,j,m,α

n
i−1,j,m)

)
,

Fy
i,j−1/2,m :=

(
vn+

i,j−1/2,mg(α
n
i,j−1,m,α

n
i,j,m)−vn−

i,j−1/2,mg(α
n
i,j,m,α

n
i,j−1,m)

)
,

Fz
i,j,m−1/2 :=

(
wn+

i,j,m−1/2g(α
n
i,j,m−1,α

n
i,j,m)−wn−

i,j,m−1/2g(α
n
i,j,m,α

n
i,j,m−1)

)
,

(6.47b)
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and for a ∈ R,

un
i−1/2,j,m =

 tn+1

tn

 yj+1/2

yj−1/2

 zm+1/2

zm−1/2

u(t,xi−1/2, s,r)drdsdt,

vn
i,j−1/2,m =

 tn+1

tn

 xi+1/2

xi−1/2

 zm+1/2

zm−1/2

v(t,s,yj−1/2, r)drdsdt, and

wn
i,j,m−1/2 =

 tn+1

tn

 xi+1/2

xi−1/2

 yj+1/2

yj−1/2

w(t,s,r,zm−1/2)drdsdt.

Recall the time–reconstruct in Definition 6.3. Let αh,δ : Ω̂T → R be the time–reconstruct
corresponding to the family of functions {αn

h}n≥0. Define the BV in the time–space domain
Ω̂T for a function β : Ω̂T → R by

|β|BVx,y,z,t := |β|L1
xL1

yL1
zBVt

+ |β|L1
t L1

xL1
yBVz

+ |β|L1
t L1

yL1
zBVz

+ |β|L1
t L1

zL1
xBVy

.

The next theorem shows that αh,δ is a function of BV . The proof follows analogous to
Theorem 6.4. [bounded variation] Let Xk×Yh×Zl be a three dimensional admissible grid.
Assume (AS.1), (AS.2), (AS.3∗), and the Courant–Friedrichs–Lewy (CFL) condition

4δmax
i,j

(
1
ki

+ 1
hj

+ 1
νm

)
Lip(g)||uuu||L∞(ΩT ) ≤ 1. (6.48a)

If α0 ∈ L∞(Ω̂)∩BVxxx(Ω̂), then αh,δ satisfies |αh,δ|BVx,y,z,t ≤ ĈBV, where ĈBV depends on T ,
α0, f , g, ||∇uuu||

L1
t L∞(Ω̂T ), and |div(uuu)|L1

t BVx,y,z
.

6.8 Existence result for a ductal carcinoma model
Set Ω = (0,1)× (0, ℓ) in the sequel. Recall the ductal carcinoma in situ model (6.5). The
model seeks a four tuple (α,p,uuu,c) such that, in ΩT = (0,T )×Ω it holds

tumour cell concetration
{
∂α

∂t
+div(uuuα) = γα(1− c),

velocity−pressure system

 −µ
(

∆uuu+ 1
3
∇(div(uuu))

)
+∇p = 000,

div(uuu) = γ(1− c), and
nutrient concentration

{
−∆c=Qα,

A crucial application of Theorem 6.4 is that it enables us to prove the existence of a
weak solution to coupled problems involving α and uuu, such as (6.5). In this section, we
apply Theorem 6.4 to establish the existence of a solution to the ductal carcinoma in situ
problem (6.5). The main idea is to combine a finite volume discretisation of (6.5a) and
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semi–discrete variational formulation of (6.5b), and thereby reduce the interdependence
between α and uuu to a semi–discrete relation (αn+1

h ,uuun+1
h ) = FFF (αn

h,uuu
n
h), where (αn

h,uuu
n
h) is

the discrete solution at time step n and h is the discretisation factor. Then, an inductive
argument is used to show that the BV norm of the time–reconstruct αh,δ, see Definition 6.3,
constructed from (αn

h)n≥0 is independent of h and δ. Finally, Helly’s selection theorem,
see Theorem I, is invoked to obtain a convergent subsequence of {αh,δ}h,δ and the limit
function is proved to be a weak solution of (6.5a).
Initial and boundary conditions
Fix an ε such that 0<ε< (ℓ−1)/2 and define the auxiliary domain Ω(ε) := (0,1)×(0, ℓ−ε).
Recall that for any A⊂Rd, the set AT is defined by AT = (0,T )×A. In the sequel, x (resp.
y) component of uuu is denoted by u (resp. v).

The initial concentration of the tumour cells and nutrient are α(0,xxx) = α0(xxx) and
c(0,xxx) = c0(xxx), respectively. We assume that α0|(0,1)×(1,ℓ) = 0, which means the initial
tumour occupies only a subset of (0,1)× (0,1) and later spreads throughout the duct Ω
as time evolves. In Proposition 6.22, we obtain a time T∗ such that the concentration of
tumour cells remains zero for every (t,x,y) ∈ (0,T∗)× (0,1)× (ℓ− 2ϵ,1). This temporal
restriction is imperative as it enables us to obtain a uniform BV estimate on the finite
volume solutions. The boundary conditions on (6.5b) and (6.5c) are as follows:

on x ∈ {0,1} : uuu ·nnn= 0, ∇v ·nnn= 0, ∇c ·nnn= 0, (6.50)
on y = 0 : uuu ·nnn= 0, ∇u ·nnn= 0, ∇c ·nnn= 0, and (6.51)
on y = ℓ : uuu · τττ = 0, ∇v ·nnn= 0, ∇u · τττ = γ, c= 0,p= 0, (6.52)

where τττ and nnn are the unit tangent and unit normal vectors to ∂Ω, respectively. The
boundary condition c = 0 at y = 0 used in [29] is replaced by ∇c ·nnn = 0 in (6.51), which
indicates that nutrient cannot enter or leave the interior of duct through the duct wall at
y = 0. The supplementary condition ∇u ·τττ = γ i in (6.52) is obtained from from (6.5c) and
the boundary condition c = 0 at y = ℓ. These changes are reasonable from the modelling
perspective, and aid in obtaining the minimal regularity on uuu and c that guarantees the
convergence of discrete solutions.

Recall the following definitions from Section 1.4. The Sobolev spaces Wm,p(Ω),
Hm(Ω) := Wm,2(Ω), and Lp(Ω), where 1 ≤ p ≤ ∞, are defined in the standard way.
Set the product spaces WWWm,p(Ω) := Wm,p(Ω) ×Wm,p(Ω) and HHHm(Ω) := Hm(Ω) ×
Hm(Ω). For uuu = (u1, . . . ,ud) ∈ Πd

i=1W
m,p(Ω), d ∈ {1,2}, define the norm ∥uuu∥m,p,Ω :=∑d

i=1
∑

|βββ|≤m ∥∂βββui∥Lp(Ω), where βββ ∈N2 is a multi–index. Let Xloc(Ω) := {v ∈ L2(Ω) : v|ω ∈
X(ω) ∀ω ⊂⊂ Ω}, where X =Hm or X =HHHm. Define the Hilbert spaces HHH and V by

HHH :=
{
uuu := (u,v) ∈HHH1(Ω)

uuu ·nnn= 0 at x= 0, x= 1, y = 0,
and uuu · τττ = 0 at y = ℓ

}
and

V := {v ∈H1(Ω) : v = 0 at y = ℓ}.

For ease of notations, the explicit dependence of variables (α,uuu,p,c) on time is skipped.
For instance, in (6.54), uuu stands for uuu(t, ·).
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Definition 6.16 (weak solution). A weak solution of the problem (6.5a)–(6.5c) is a four
tuple (α,uuu,p,c) such that the following conditions hold:

1. For ∇t,xxx = (∂t,∇), the tumour cell concentration α ∈ L∞(ΩT ) is such that, for every
ϑ ∈ C ∞

c ([0,T )×Ω),
�

ΩT

((α,uuuα) ·∇t,xxxϑ+γα(1− c)ϑ) dxxxdt+
�

Ω
α0(xxx)ϑ(0,xxx)dxxx= 0. (6.53)

2. The velocity–pressure system is such that uuu ∈ L2(0,T ;HHH), p ∈ L2(0,T ;L2(Ω)), and
for every ψψψ := (ψ1,ψ2) ∈ L2(0,T ;HHH), w ∈ L2(0,T ;L2(Ω)),

� T

0
µa(uuu,ψψψ)dxxx−

�
ΩT

pdiv(ψψψ)dxxxdt=
� T

0

�
y=ℓ

γµ

3
ψ2 dsdt, and (6.54)

�
ΩT

div(uuu)wdxxxdt=
�

ΩT

γ(1− c)wdxxxdt,

where
a(vvv,www) :=

�
Ω

(∇vvv :∇www+ 1
3

div(vvv)div(www))dxxx

for vvv,www ∈HHH1(Ω).

3. The variable c ∈ L2(0,T ;V ) satisfies, for every φ ∈ L2(0,T ;V )
� T

0

�
Ω
∇c ·∇φdxxxdt=

� T

0

�
Ω
Qαφdxxxdt. (6.55)

We define a semi–discrete scheme for (6.5), where the tumour cell concentration is
discrete and other variables are kept continuous. The tumour cell concentration is discre-
tised using a finite volume method, and the velocity–pressure and nutrient concentration
are obtained from the corresponding weak formulations and boundary conditions (6.50)–
(6.52).

Semi–discrete scheme: Let Xh×Yh be a uniform grid on Ω(ε) with h < ε and 0 = t0 <
· · · < TN = T be a uniform temporal discretisation with δ = tn+1− tn. Construct a finite
sequence of functions (αn

h,uuu
n
h,p

n
h, c

n
h){0≤n<N} on Ω as follows. For n= 0, define α0

h : Ω→R
by α0

h := α0
i,j, where α0

i,j :=
�

Ki,j
α0(xxx)dxxx. For 0≤ n < N , define the iterates as follows.

1. The function cnh ∈ V is defined by: for every φ ∈ V ,
�

Ω
(∇cnh ·∇φ−Qαn

hφ)dxxx= 0. (6.56)
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2. The functions (uuun
h,p

n
h) ∈HHH×L2(Ω) is defined by: for every (φφφ,q) ∈HHH×L2(Ω) with

φφφ= (φ1,φ2),

µa(uuun
h,φφφ)−

�
Ω
pn

h div(φφφ)dxxx=
�

y=ℓ

γµ

3
φ2 ds, and (6.57)

�
Ω

div(uuun
h)qdxxx=

�
Ω
γ(1− cnh)qdxxx. (6.58)

3. Define αn+1
h as the trivial extension of α̂n+1

h : Ω(ε)→ R, where α̂n+1
h := α̂n+1

i,j on
Ki,j = (xi−1/2,xi+1/2)× (yj−1/2,yj+1/2) is obtained by

α̂n+1
i,j = α̂n

i,j−
δ

h

[
(F̂n

i+1/2,j− F̂n
i−1/2,j)+(Ĝn

i,j+1/2 +Ĝn
i,j−1/2)

]
+γδ

 
Ki,j

α̂n
i,j(1− cn

h)dxxx, (6.59)

where

F̂n
i−1/2,j := un+

i−1/2,jα
n
i−1,j−un−

i−1/2,jα
n
i,j , Ĝn

i,j−1/2 := vn+
i,j−1/2α

n
i,j−1−vn−

i,j−1/2α
n
i,j ,

un
i−1/2,j =

 tn+1

tn

 yj+1/2

yj−1/2

un
h(xi−1/2, s)dsdt, and

vn
i,j−1/2 =

 tn+1

tn

 xi+1/2

xi−1/2

vn
h(s,yj−1/2)dsdt.

6.8.1 Compactness
The functions αh,δ, uuuh,δ, ph,δ, and ch,δ are the time–reconstructs, see Definition 6.3, corre-
sponding to the family of functions (αn

h){n≥0}, (uuun
h){n≥0}, (pn

h){n≥0}, and (cnh){n≥0}, respec-
tively.
Theorem 6.17 (Compactness). Fix a positive number αM > a0 = supΩ |α0|. Assume that
α0|(0,1)×(1,ℓ) = 0 and the following property on the discretisation factors δ and h:

C ε
ICFL ≤

δ

h
≤ γCemb,ε Cε (1+QC

√
2ℓαM ). (6.60a)

where the constants C > 0 and Cemb,εCε > 0 are specified in Lemmas 6.20 and 6.21, re-
spectively. Here, Cε, Cemb,ε and C ε

ICFL depends on ε, but not on h and δ. Then, there
exists a finite time T∗ <∞, a subsequence – denoted with the same indices – of the family
of functions {(αh,δ,uuuh,δ,ph,δ, ch,δ)}h,δ obtained from the semi–discrete scheme, and a four
tuple of functions (α,uuu,p,c) such that

α ∈BV (ΩT∗), uuu ∈ L2(0,T∗;HHH), p ∈ L2(0,T∗;L2(Ω)), c ∈ L2(0,T∗;V )

and as h,δ→ 0
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• αh,δ→ α almost everywhere and in L∞ weak−⋆ on ΩT∗,

• uuuh,δ ⇀uuu weakly in L2(0,T∗;HHH), ph,δ ⇀ p weakly in L2(0,T∗;L2(Ω)), and

• ch,δ ⇀ c weakly in L2(0,T∗;V ).

Remark 6.18 (Necessity of strong BV estimate on αh,δ). The uniform boundedness on
αh,δ directly yields a subsequence that converges in weak–∗ topology. However, this is not
sufficient to show that the second term in the right hand side of (6.59) converges weakly.
It is shown that ch,δ converges weakly in L2(0,T∗;H1(Ω)). Therefore, to establish that
αh,δ(1− ch,δ) converges weakly to α(1− c), the strong convergence of αh,δ is required. We
employ Theorem I of Section 6.3.1 to extract a subsequence of {αh,δ} that converges almost
everywhere and in L1(ΩT∗), for which a strong uniform BV estimate is necessary.

The proof of Theorem 6.17 is achieved over multiple steps. We establish the following
properties.

• in Lemma 6.20: cnh has W 2,p(Ω) regularity, which yields an estimate on ∥ch∥1,∞,Ω

• in Lemma 6.21: uuun
h hasHHH3

loc(Ω) regularity, which yields a local estimate on ∥uuun
h∥1,∞

• in Proposition 6.22: the finite volume solution αh,δ is bounded, and

• in Proposition 6.23: Corollary 1 and the above steps are employed to prove that
αh,δ is a function with BV .

Define the extended functions cnh, uuun
h := (un

h,v
n
h), and pn

h on Ωext := (−1,2)× (−ℓ,ℓ) using
even and odd reflections as follows. Let a ∈ {0,1,2} and b ∈ {0, ℓ}. Then, on (a− 1,a)×
(b− ℓ,b) set (x̃, ỹ) := (x(−2a2 +4a−1)+(a2−a),(2b− ℓ)y/ℓ) and define

αn
h(x,y) := αn

h(x̃, ỹ), cnh(x,y) := cnh(x̃, ỹ), pn
h(x,y) := pn

h(x̃, ỹ), and
un

h(x,y) := (−2a2 +4a−1)un
h(x̃, ỹ), vn

h(x,y) := (2b/ℓ−1)vn
h(x̃, ỹ).

}
(6.61)

In (6.61), we have a compact representation of all reflections employed to construct the
extended functions. A pictorial representation of (6.61) is provided in Figure 6.7 for clarity.
We introduced three spatial domains so far and relations between them are represented in
Figure 6.8.

Remark 6.19 (auxiliary domain Ω(ε)). The internal regularity result, see Theorem III,
only grants uuun

h ∈HHH
3(Ω(ε)). The discontinuity in normal gradient of the even reflection of c

about y = ℓ prevents us from extending this local regularity of uuun
h up to y = ℓ. As a result, it

is necessary to keep Ω(ε) to have enough regularity of uuun
h to move the analysis forward. We

use the Sobolev embedding theorem to obtain uuun
h ∈HHH

3(Ω(ε)) ↪→WWW 1,∞(Ω(ε)), from which a
BV estimate on αh,δ|Ω(ε) is derived, see Corollary 1. By imposing a restriction on time,
the BV regularity of αh,δ is extended to Ω.
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Figure 6.7: Extended functions on the rectangle (−1,2)× (−ℓ,ℓ)

Lemma 6.20. For every n ≥ 0, (6.56) has a unique solution cnh ∈ V . Moreover, it holds
cnh ∈ H2

loc(Ωext), cnh ∈W 2,p(Ω) for any p ≥ 2, and ∥cnh∥2,p,Ω ≤ CQ(2ℓ)1/p∥αn
h∥0,∞,Ω, where

C > 0 is a constant that depends only on Ω.

Proof. An application of the Lax–Milgram theorem ensures the existence of a unique cnh ∈
V that satisfies (6.56). Observe that cnh ∈ Hext := {v ∈ H1(Ωext) : v = 0 at y = ℓ,−ℓ}.
Apply change of variables to establish

�
Ωext
∇cnh ·∇vdxxx=Q

�
Ωext

αn
hvdxxx for every v ∈Hext.

Therefore, Theorem I yields cnh ∈H2
loc(Ωext).

The W 2,p(Ω) regularity of cnh is obtained by an application of odd reflection on cnh
about y = ℓ. Set Λ := (0,1)× (0,2ℓ). Define the function ĉnh : Λ→ R by

ĉnh :=
{

cnh(x,y) if y ≤ ℓ, and
−cnh(x,2−y) if y > ℓ.

Let f(x,y) = Qαn
h(x,y) if y ≤ ℓ and f(x,y) = −Qαn

h(x,2− y) if y ≥ ℓ. Then, note that
ĉnh ∈H1(Λ) and

�
Λ∇ĉ

n
h ·∇vdxxx =

�
Λ fvdxxx holds for every v ∈H1(Λ). Hence, Theorem II

shows that ĉnh ∈W 2,p(Λ), p≥ 1, and that ∥cnh∥2,p,Ω ≤ C (2ℓ)1/pQ∥αn
h∥0,∞,Ω.

Lemma 6.21. For every n ≥ 0, there exists a unique (uuun
h,p

n
h) ∈ HHH ×L2(Ω) that satis-

fies (6.57)–(6.58) for every (φφφ,q) ∈HHH×L2(Ω). Moreover, it holds uuun
h ∈HHH

3
loc(Ωext) and for

each ε > 0

∥uuun
h∥3,2,Ω(ϵ) ≤ γCε (1+CQ

√
2ℓ∥αn

h∥0,∞,Ω),

where Cε > 0 depends only on ε.
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Figure 6.8: Relationship with domains

Proof. The existence of a unique solution (uuun
h,p

n
h) ∈ HHH × L2(Ω) follows from the

Ladyshenzkaya–Babuska–Brezzi theorem [112, p. 227]. Set the space

HHHext :=
{
uuu := (u,v) ∈HHH1(Ωext)

uuu ·nnn= 0 at x=−1, x= 2,
and uuu · τττ = 0 at y = ℓ, y =−ℓ

}
.

Then, observe that the extended function (uuun
h,p

n
h) belongs to HHHext×L2(Ωext) and satisfies

for every (φφφ,q) ∈HHHext×L2(Ωext)

µ

�
Ωext

(
∇uuun

h :∇φφφ+ 1
3

div(uuun
h

)
div(φφφ))dxxx−

�
Ωext

pn
h div(φφφ)dxxx=

�
y=ℓ,−ℓ

γµ

3
φ2 ds, and

�
Ωext

div(uuun
h)qdxxx=

�
Ωext

γ(1− cnh)qdxxx.

Since Lemma 6.20 yields γ(1− cnh) ∈H2
loc(Ωext), apply Theorem III to conclude the proof.

Lemmas 6.20 and 6.21 are crucial in obtaining the supremum norm estimates on cnh and
div(uuun

h) on Ω(ε). Since cnh ∈W 2,p(Ω) and uuun
h ∈HHH

3(Ω(ε)), the Sobolev embedding theorem
with p > 2 yields, with Cemb and Cemb are the embedding constants that depends only on
Ω and Ωε, respectively

∥cnh∥1,∞,Ω ≤ Cemb||cnh||2,p,Ω ≤ CembCQ(2ℓ)1/p∥αn
h∥0,∞,Ω, and (6.62)

∥uuun
h∥1,∞,Ω(ε) ≤ Cemb,ε∥uuun

h∥3,2,Ω(ε) ≤ γCemb,εCε (1+CQ
√

2ℓ∥αn
h∥0,∞,Ω). (6.63)

Proposition 6.22. Fix a positive number αM > a0. There exists a finite time T∗ > 0 such
that for every t≤ T∗, supΩ |αh,δ(t, ·)| ≤ αM holds.

Proof. Step 1: The proof employs strong induction on the time index n. Since a0 < αM ,
the base case holds. To establish the inductive case, assume that supΩ(ε) |αh,δ(tk, ·)| ≤ αM
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for every k ≤ n. We establish that supΩ(ε) |αh,δ(tn+1, ·)| ≤ αM holds for every tn+1 < T1,
for a fixed time T1 > 0.
Step 2: Recall ∥v∥L1

t L∞(Ω(ε)T ) :=
� T

0 ∥v(t, ·)∥L∞(Ω(ε)) dt. The results in (6.63) and (6.60a)
imply the CFL condition in Theorem 6.4. Then, Proposition 6.6 applied to (6.59) yields,
for any finite time t < T

∥αh,δ(t, ·)∥L∞(Ω(ε)) ≤ B
(
a0 +∥div(uuun

h)∥L1
t L∞(Ω(ε)T )

)
, (6.64)

where B = exp(∥div(uuun
h)∥L1

t L∞(Ω(ε)T ) + γ(T + ||cnh||L1
t L∞(Ω(ε)T ))). Then (6.62), (6.63),

and (6.64) imply ∥αh,δ(t, ·)∥L∞(Ω(ε)) ≤F (T ), where

F (T ) := exp(TγCemb,εCε (1+CQ
√

2ℓαM ) +
TQCembC (2ℓ)1/pαM )

(
a0 +TγCemb,εCε (1+QC

√
2ℓαM )

)
.

Since F (0)−αM < 0 and F is continuous, there exists a finite time T1 such that for every
t ∈ [0,T1] it holds ∥αh,δ(t, ·)∥L∞(Ω(ε)) ≤F (T1)≤ αM .
Step 3: Next, we need to show that αh,δ is bounded on Ω\Ω(ε). Note that α0(x,y) = 0
for y ≥ 1. The finite speed of propagation of the scheme (6.59) on Ω(ε) and (6.60a) yield
αh,δ = 0 on (0,T2)×(ℓ−2ε,ℓ), where T2 := (ℓ−2ε−1)/(γCemb,εCε (1+QC

√
2ℓαM ))). Since

h < ε, αn
i,j = 0 for every Ki,j ⊂ (ℓ−2ε,ℓ), see Figure 6.8. Define T∗ = min(T1,T2) to obtain

the conclusion.

Observe that for every (t,xxx,z) ∈ (0,T∗)×Ω× (−αM ,αM ), the function S(t,xxx,z) =
γ(1− ch,δ)z is Lipschitz continuous with respect to z, uniformly with respect to t and xxx
and Lipschitz continuous with respect to xxx, uniformly with respect to t and z. This is a
direct consequence of (6.62).
Proposition 6.23. The function αh,δ : (0,T∗)×Ω→ R has bounded variation. Moreover,
on (0,T∗)×Ω it holds |αh,δ|BVx,y,t ≤ CBV , where CBV is independent of h and δ.

The proof of Proposition 6.23 follows from an application of Corollary 1, the Lipschitz
continuity of γ(1− ch,δ(t,xxx))z of (t,xxx,z) on (0,T∗)×Ω× (−αM ,αM ), and the fact that
αh,δ = 0 on (0,1)× (ℓ−2ϵ,ℓ), see Figure 6.8.

Proof of Theorem 6.17

Recall that ΩT∗ = (0,T∗)×Ω. Proposition 6.23 shows that αh,δ ∈ BV (ΩT∗). Therefore, an
application of Theorem I provides the existence of subsequence of {αh,δ} – assigned with
the same indices – and a function α ∈ BV (ΩT∗) such that αh,δ → α almost everywhere
and L∞ weak−⋆ on ΩT∗ . Lemma 6.20 and Lemma 6.21 show that ch,δ ∈ L2(0,T∗;V ) and
(uuuh,δ,ph,δ)∈L2(0,T∗;HHH)×L2(0,T∗;L2(Ω)) for every h and δ. Observe that L2(0,T∗;V ) and
L2(0,T∗;HHH)×L2(0,T∗;L2(Ω)) are Hilbert spaces. Hence, there exist subsequences of {ch,δ}
and {(uuuh,δ,ph,δ)}, and functions c ∈ L2(0,T∗;V ) and (uuu,p) ∈ L2(0,T∗;HHH)×L2(0,T∗;L2(Ω))
such that ch,δ ⇀ c weakly in L2(0,T∗;V ) and (uuuh,δ,ph,δ) ⇀ (uuu,p) weakly in L2(0,T∗;HHH)×
L2(0,T∗;L2(Ω)).
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6.8.2 Convergence
Theorem 6.24 (Convergence). Let (α,uuu,p,ccc) be a limit of any subsequence of
{(αh,δ,uuuh,δ,ph,δ, ch,δ)}h,δ obtained from the semi–discrete scheme in the sense of Theo-
rem 6.17. Then, (α,uuu,p,ccc) is a solution to the problem (6.5a)–(6.5c) for the finite time
T∗ <∞.

Proof of Theorem 6.24. The proof of Theorem 6.24 has two steps.
Step 1. (Convergence of tumour cell concentration) Let α : ΩT∗ → R be a limit
provided by Theorem 6.17 such that αh,δ → α almost everywhere in ΩT∗ . Then, we show
that α satisfies (6.53) for every ϑ ∈ C ∞

c ([0,T∗)×Ω).
Set φ ∈ C ∞

c ([0,T∗)×Ω) and N∗ = T∗/δ. For ease of notations, let φ(t, ·) denote its
trivial extension on R2, for every t ≥ 0. Multiply (6.59) by h2ϑn

i,j , ϑn
i,j :=

�
Ki,j

ϑ(tn, ·)dxxx
and sum over the indices to obtain T1 +T x

2 +T y
2 = T3, where

T1 := h2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

(αn+1
i,j −α

n
i,j)ϑn

i,j ,

T x
2 := h2δ

N∗−1∑
n=0

I∑
i=0

J∑
j=0

(
un+

i+1/2,jα
n
i,j−un−

i+1,jα
n
i+1/2,j−u

n+
i−1/2,jα

n
i−1,j +un−

i−1/2,jα
n
i,j

)
ϑn

i,j ,

T y
2 := h2δ

N∗−1∑
n=0

I∑
i=0

J∑
j=0

(
vn+

i,j+1/2α
n
i,j−vn−

i,j+1/2α
n
i,j+1−vn+

i,j−1/2α
n
i,j−1 +vn−

i,j−1/2α
n
i,j

)
ϑn

i,j , and

T3 := h2δ
N∗−1∑
n=0

I−1∑
i=0

J−1∑
j=0

γϑn
i,j

� tn+1

tn

 
Ki,j

αh,δ(1− ch,δ)dxxx,dt.

Define the piecewise constant function α0
h|Ki,j

:=
�

Ki,j
α0(xxx)dxxx for 0≤ i≤ I and 0≤ j ≤ J .

Since ϑN∗
i,j = 0 for all i, j, use discrete integration by parts (IV) in Section 1.4 to arrive at

T1 =−h2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

(ϑn+1
i,j −ϑ

n
i,j)αn+1

i,j −
�

Ω
α0

h(xxx)ϑ(0,xxx)dxxx. (6.65)

A direct calculation shows the first term in the right hand side of (6.65) is equal to

−
N∗−1∑
n=0

I∑
i=0

J∑
j=0

αn+1
i,j

� tn+1

tn

�
Ki,j

∂tϑ(t,xxx)dxxxdt=−
� T∗+δ

δ

�
Ω
αh,δ(t,xxx)∂tϑ(t− δ,xxx)dxxxdt.

Note that αh,δ → α almost everywhere (see Theorem 6.17) as h,δ → 0. Then, apply
Lebesgue’s dominated convergence theorem to show that the first term in the right hand
side of (6.65) converges to −

�
ΩT∗

α(t,xxx)∂tϑ(t,xxx)dtdxxx. Since α0
h→ α0 in L2(Ω), the second

term in the right hand side of (6.65) converges to −
�

Ωα0(xxx)ϑ(0,xxx)dxxx.
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The convergence of T y
2 is shown next. The steps for T x

2 follow similar steps. An
application (IV) in Section 1.4 on T y

2 leads to

T y
2 = δh2

N∗−1∑
n=0

I∑
i=0

J∑
j=0

ϑn
i,j

(
|vn

i,j+1/2|
αn

i,j−αn
i,j+1

2
−|vn

i,j−1/2|
αn

i,j−1−αn
i,j

2

)

+ δh2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

ϑn
i,j

(
vn

i,j+1/2
αn

i,j +αn
i,j+1

2
−vn

i,j−1/2
αn

i,j−1 +αn
i,j

2

)
=: T21 +T22.

Set αn
i,J+1 = 0 and αn

i,−1 = 0. Then,

|T21| ≤

∣∣∣∣∣∣δh2
N∗−1∑
n=0

I∑
i=0

J−1∑
j=0

(ϑn
i,j+1−ϑn

i,j)|vn
i,j+1/2|

αn
i,j−αn

i,j+1
2

∣∣∣∣∣∣+O(h)

≤ h

2
||uuuh,δ||L∞(ΩT∗)||∂xϑ(t,xxx)||L∞(ΩT∗)

N∗−1∑
n=0

δ
I∑

i=0
h

J−1∑
j=0
|αn

i,j−αn
i,j+1|+O(h),

and hence (6.63) and Proposition 6.23 imply |T21| → 0 as h→ 0. Use (IV) in Section 1.4
to obtain

T22 =−δh2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

(ϑn
i,j+1−ϑn

i,j)vn
i,j+1/2

αn
i,j +αn

i,j+1
2

+O(h).

Add and subtract δ∑N∗−1
n=0

∑I
i=0

∑J
j=0(ϑn

i,j+1−ϑn
i,j)

vn
i,j−1/2

2 αn
i,j to (4.43) to arrive at

T22 = δh2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

vn
i,j+1/2α

n
i,j+1

2
(ϑn

i,j+1−ϑn
i,j−ϑn

i,j+2 +ϑn
i,j+1)

− δh2
N∗−1∑
n=0

I∑
i=0

J∑
j=0

(ϑn
i,j+1−ϑn

i,j)
vn

i,j+1/2 +vn
i,j−1/2

2
αn

i,j . (6.66)

Use of the definition of ϑn
i,j , mean value theorem, and CFL condition (6.60a) to show that

the first term in the right hand side of (6.66) converges to zero. Define ∂h,δφ : ΩT∗ → R by
∂h,δφ := (ϑn

i,j+1−ϑn
i,j)/h on (tn, tn+1)×Ki,j . Then the second term in the right hand side

of (6.66) can be expressed as

−
� T∗

0

�
Ω
vh,δαh,δ∂h,δϑdxxxdt→−

� T∗

0

�
Ω
vα∂xϑdxxxdt,

where Lemmas III(a) and III(b) are applied in the last step. Follow the same steps for T x
2

to obtain T2→−
� T∗

0
�

Ωαuuu ·∇ϑdxxxdt. Rewrite T3 and apply Lemma III(a)
� T∗

0

�
Ω
γαh,δ(1− ch,δ)dxxxdt→

� T

0

�
Ω
γα(1− c)dxxxdt.
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Plug the above in T1 +T x
2 +T y

2 = T3 to arrive the desired conclusion.
The proofs of step 2 and step 3 follows from a direct application of weak convergence

of (uh,δ,ph,δ) and ch,δ. Hence, we omit the proofs.

Step 2. (Convergence of pressure–velocity system) Let (uuu,p) : ΩT∗ → R3 be a
limit provided by Theorem 6.17 such that uuuh,δ ⇀ uuu weakly in L2(0,T∗;HHH) and ph,δ ⇀ p
weakly in L2(0,T∗;L2(Ω)). Then, (uuu,p) satisfies (6.5b) for every (ψψψ,q) ∈ L2(0,T∗;HHH)×
L2(0,T ;L2(Ω)). The proof directly follows from the weak convergences on uuuh,δ and ph,δ.

Step 3. (Convergence of nutrient concentration) Let c : ΩT∗→R be a limit provided
by Theorem 6.17 such that ch,δ ⇀c weakly in L2(0,T∗;V ). Then c satisfies (6.55) for every
φ ∈ L2(0,T∗;V ). The proof is straightforward from the weak convergence of ch,δ.

6.9 Conclusions
A uniform estimate on total variation of discrete solutions obtained by applying finite vol-
ume schemes on conservation laws of the form (6.1) in two and three spatial dimensions
for nonuniform Cartesian grids is proved. We relaxed the standard assumption that the
advecting velocity vector is divergence free. This enables us to apply the finite volume
scheme to problems in which the advecting velocity vector is a nonlinear function of the
conserved variable. Since the underlying meshes are nonuniform Cartesian it is possible to
adaptively refine the mesh on regions where the solution is expected to have sharp fronts. A
uniform BV estimate is also obtained for finite volume approximations of conservation laws
of the type (6.38) that has a fully nonlinear flux on nonuniform Cartesian grids. Numerical
experiments support the theoretical findings. The counterexample by B. Després and nu-
merical evidence from Table 6.13 indicate that nonuniform Cartesian grids are the current
limit on which we can obtain uniform BV estimates. Extending Theorem 6.4 to perturbed
Cartesian grids (Figure 6.6(e)) might be the immediate future step. Theorem 6.24, which
proves the existence of a weak solution to the tumour growth model (6.5), attests to the ap-
plicability of Theorem 6.4 in the analytical study of coupled systems involving conservation
laws and elliptic equations.
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Chapter 7

Two–phase model of compressive
stress induced on a surrounding
hyperelastic medium by an
expanding tumour

This chapter presents a mathematical model of in vitro tumour growth in an external poly-
meric medium in 1D. The tumour is modelled as a biphasic mixture. Nonlinear elasticity
is employed to model the external medium, referred to as hydrogel. The models considered
in Chapters 1–3 account for tumour growth in free suspension. The influence of external
medium on nutrient diffusion is captured by the nutrient limited model (NLM) in Chap-
ter 5. The work in this chapter quantifies the sole effect of compressive stress induced on
the polymeric medium on tumour growth. To isolate the influence of compressive stress
the effect on nutrient diffusion is not included in the current model.

7.1 Introduction
The compressive stress induced in the external medium controls tumour topology. More-
over, it has significant medical and genetic consequences. For instance, brain tumour and
subsequent oedema generate abnormally high intracranial pressure, which may lead to
severe headaches, nausea, seizures, and even death [87]. The mechanical stress activates
oncogenes, which triggers signalling pathways that modify cellular mechanical response and
tissue geometry [88]. The reduction in tumour spheroid sizes due to the mechanical stress
in external polymeric medium or soft tissues has been well known since the late 1990s [89–
91]. Recent studies have shown that external mechanical stress has a necrotic effect on
breast and other types of cancer cells, see S. Takao et al. [92] and references therein. The
biological significance of the impact of compressive stress on tumour growth justifies the
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need for modelling and computational studies along with experimental research1.
To study the effect of hydrogel on a proliferating tumour (and vice versa), we require

a combined model of two processes; the tumour growth and the mechanical deformations
occurring in the hydrogel. These two processes operate in an entangled fashion, wherein
one acts as a feedback to the other.

The modelling of tumour spheroids is a well-developed subject in mathematical bi-
ology, see for example the reviews [53, 54] and Chapter 1. In this chapter, the framework
used in the BBL model of Section 1.5 is used to model a growing tumour. The cells and
fluid medium constitute the cell and fluid phase, respectively. The proliferation rate of tu-
mour cells is controlled by an external nutrient, which follows a diffusion process. We apply
conservation of mass and momentum to the cell and fluid phases to obtain the governing
equations for tumour growth. The model variables associated with tumour growth are the
volume fraction of tumour cells, the velocity of tumour cells, nutrient concentration, and
tumour radius.

Hydrogel belongs to the class of hyperelastic materials, which means it follows a
nonlinear stress-strain relationship [113], [114, p. 136-149]. Moreover, hyperelastic materials
are characterised by a stored energy density, the derivative of which with respect to the
deformation gradient yields the stress tensor. This characterisation is an advantage in
the sense that it is sufficient to know the energy density in terms of the deformation
gradient; the stress tensor can be computed from the energy density and rules of equilibrium
classical mechanics can be applied to obtain the governing equation. However, the selection
of an appropriate energy density is mostly heuristic and phenomenological. A review of
energy density functionals that can be employed to model the mechanical behaviour of soft
biological tissues is provided in G. Changon et al. [93].

In this chapter, we develop a biphasic model for tumour growth based on the works
described in [7]. The hydrogel is modelled as a compressible hyperelastic material. In
practice, the hydrogel is a mixture of absorbed fluid and the polymeric material. When a
compressive force is applied, two mechanisms occur in the hydrogel. Firstly, the compressive
force deforms the polymeric scaffold in the hydrogel. Secondly, the hydrogel registers a
volumetric change since a part of the solvent is absorbed into the tumour. The absorbed
fluid is utilised by tumour cells to facilitate cell proliferation and growth. However, in this
chapter, the fluid dynamic effects in the hydrogel are ignored in conformity with previous
works [30]. Instead, we only focus on the mechanical deformation in the hydrogel to gain
a clear understanding of the effect of compressive stress on tumour growth.

Since the tumour is expanding, the interface between the tumour and hydrogel is a
time-dependent unknown variable associated with the model. At a fixed time, the location
of this interface is characterised by the continuity of the normal stress in the tumour and
that in the hydrogel. Here, a major difference from the BBL model in Section 1.5 is that
the Neumann boundary condition associated with the cell velocity equation is no more

1The work in this chapter is to be submitted: G. C. Remesan, J. A. Flegg, and H. Byrne, Two–phase
model of compressive stress induced on a surrounding hyperelastic medium by an expanding tumour, (25
pages), 2021.
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homogeneous.
Literature
The use of multiphase mixture theory and conservation equations in individual phases to
model tumour spheroid growth started in the 1970s with the work by H. P. Greenspan [59].
Mathematical modelling of tumours has witnessed significant progress since the second half
of the 1990s with the emergence of many publications with sophisticated models [1, 4–7, 11,
33, 53]. The biphasic framework of avascular tumour growth is extensively studied in [1] for
a single spatial dimension and in [7] for higher spatial dimensions, see Chapters 1, 2, and 5
for further details. The viscous cell phase and inviscid fluid phase obey the principles of
mass and momentum conservation. The model further reduces to a system of a hyperbolic,
generalised viscous Stokes, and parabolic equations.

An early experimental work on how the compressive stress affects the tumour growth
was conducted by G. Helminger et al. [89], where the authors report that tumours growing
in a polymeric medium eventually attains a steady state. The steady state radius decreases
as the polymer concentration in the hydrogel increases. An initial work describing the
mechanical effect of an external medium on a growing tumour is conducted by C. Y.
Chen et al. in 2001 [30]. The authors assume that tumour growth is radially symmetric
in space and consequently, the deformation in the hydrogel is also radially symmetric.
This radial symmetry makes the off-diagonal entries of the deformation gradient vanish
in spherical polar coordinates. Consequently, model equations that govern the hydrogel
dynamics reduce to a system of steady–state partial differential equations at each fixed
time. The computed radius determines the pressure experienced by the tumour cells at the
hydrogel–tumour interface, which acts as a boundary condition for the equations governing
the tumour growth. The effect of stress on the surrounding soft biological tissues by an
expanding tumour has also been investigated. In the work by I. C. Sorribes et al. [87], the
authors derive a mathematical model for the intracranial pressure and oedema induced by
brain tumours. The model also accurately captures how the healthy neurons compensate
for the abnormal intracranial pressure induced by the tumour and describes the variation
of intracranial pressure with respect to the severity of the tumour. The effect of stress
induced on an elastic and incompressible medium by avascular tumours and vice versa is
studied by F. Valdés-Ravelo et al. [94], wherein a higher dimensional model is constructed
and reduced to single dimension using symmetry arguments.

A generic and robust framework to compute numerical solutions of a multiphase
fluid flow model is provided in [10] (also see Chapter 5). In [10] the authors employ
a combination of finite volume and finite element methods to compute the approximate
solutions. However, the underlying model employed in [10] is ill–posed and the procedure
is computationally expensive since the time–dependent boundary is explicitly tracked. A
well–posed model for avascular tumour growth and improved computational procedure in
one and two spatial dimensions are presented in Chapters 2 and 5, respectively.
Contributions

(1) A model in one spatial dimension is presented. This model describes the influence
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of stress imparted by an external medium – in this case, a polymeric hydrogel –
on different properties of a proliferating tumour such as tumour radius, cell volume
fraction, cell velocity, and stress inside the tumour is presented. The time–dependent
boundary is eliminated using a transformation to the unit domain, see Chapter 1.

(2) The cell volume fraction, cell velocity, and nutrient concentration are discretised using
an upwind finite volume method, Lagrange P1 conforming finite element method, and
P1 mass-lumped finite element method, respectively.

(3) The exact expression for the deformation in the hydrogel is derived. The effect of
various parameters involved in the model on tumour growth is examined, and the
outcomes agree with the experimental results available from the literature.

Organisation
The mathematical model is derived in Section 7.2. The dimensionless model is presented
in Section 7.3. The detailed discrete scheme used to compute the numerical solutions and
a notion of weak solution is provided in Section 7.4. The numerical solutions are presented
in Section 7.5.

7.2 Mathematical model
Define the time–space domain DT := (0,T )× Iℓ, where Iℓ := (0, ℓm). The spatial bounding
box Iℓ contains the tumour and hydrogel, see Figure 7.1.

space (x)
0 ℓ0

tim
e

(t
)

0

t

T

I(t)

DT

ℓm

b

ℓ(t)

D̃T

Ĩ(t)

tumour hydrogel

Figure 7.1: Tumour and hydrogel domains.

At a fixed time t ∈ (0,T ), tumour cells occupy the domain I(t) := (0, ℓ(t)) and the hydrogel
occupies the complementary domain Ĩ(t) := (ℓ(t), ℓm). The time–space domain of tumour
growth is defined by DT := ∪0<t<T ({t}× I(t)). Define D̃T := DT \DT , where DT is the
closure of DT in R2. The domain I(0) := (0, ℓ0) ⊂ Iℓ contains the initially seeded tumour
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cells and Ĩ(0) := Iℓ \ I(0), where I(0) := [0, ℓ0], contains the undeformed hydrogel. Here, ℓ0
is the initial tumour radius.

Summary of the model
The tumour and hydrogel form a continuum in Iℓ, separated by the interphase ℓ(t)∈ (0, ℓm),
referred to as the tumour boundary. The tumour contained in the spatial domain (0, ℓ(t))
is a biphasic mixture of viscous tumour cells and inviscid extra–cellular fluid. The mass
and momentum balance applied to cells and extra cellular-fluid and further simplification
yield governing equations for the volume fraction (hyperbolic conservation law) and velocity
(elliptic) of tumour cells. An external nutrient that follows a diffusion equation (parabolic)
controls the tumour growth. The tumour boundary ℓ(t) propagates with a velocity equal
to that of tumour cells present at ℓ(t). At each time t∈ (0,T ), the hydrogel initially located
in (ℓ(0), ℓm) is deformed to (ℓ(t), ℓm). This deformation builds up stress in the hydrogel,
which is computed using hyper elasticity theory. The stress in the hydrogel is calculated as
the gradient of the strain energy density, which is a functional of the deformation gradient.
The tumour and hydrogel kinetics are coupled together by the continuity of the stress
experienced by the tumour cells and that by the hydrogel at ℓ(t). The model is closed
by appropriate initial and boundary conditions. The model assumptions are presented in
appropriate locations in the sequel enumerated as (A.x), x = 1,2, . . ..

7.2.1 Deformations in the hydrogel

Coordinates of the undeformed hydrogel are denoted by X ∈ Ĩ(0) and that of the deformed
hydrogel at a time t ∈ (0,T ) by x ∈ Ĩ(t). The deformation map is a function χ : (0,T )×
Ĩ(0)→ D̃T . At each time t ∈ (0,T ), χ(t, ·) maps Ĩ(0) onto Ĩ(t). The deformation gradient,
denoted by G, is the spatial derivative of χ, that is G(t,X) = ∂χ

∂X (t,X) for every X ∈ Ĩ(0)
and t ∈ (0,T ).

Strain energy density is the work done per unit volume in deforming the hydrogel
material. The choice of strain energy density is based on phenomenological and empirical
evidences. A wide range of strain energy density functionals are available in the literature
[115, 116]. We consider the following strain energy density suggested by P. J. Flory [117,
95]:

WG = ν

2
G2− 3

2
NkBTabs−ϑ log (G) , (7.1)

where ν and ϑ are nonnegative constants with the dimension of stress (force/area), N is
the ratio between the number of hydrogel polymer chains and the volume of the hydrogel in
dry state, kB is the Boltzmann constant, and Tabs is the absolute temperature considered
as a constant in this work. The formula (7.1) is obtained from applying thermodynamic
principles to stretching of a lattice consisting of polymer fibres. The energy density func-
tional (7.1) is also used to model the stretching in a polymer lattice due to absorption of a
solvent with small molecular size such as water, which is known as Flory–Huggins solution
theory [117].
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The equations of motion that govern the kinetics of the hydrogel particles are for-
mulated in the material or Lagrangian coordinates. The hydrogel deformations attain
steady–state much faster than the tumour, which leads to, for every (t,X) ∈ (0,T )× Ĩ(0)

∂σH

∂X
= 0, (7.2)

where σH := ∂WG
∂G is the fist Piola–Kirchoff stress tensor. It follows from (7.1) that

σH = νG−ϑG−1. (7.3)

Substitute (7.3) in (7.2) to obtain

ν
∂2χ

∂X2 +ϑ

(
∂χ

∂X

)−2
∂2χ

∂X2 = 0. (7.4)

Since ∂χ
∂X is the ratio of two infinitesimal lengths and the linear ordering of the mate-

rial in the hydrogel is preserved under any admissible transformations (compression and
stretching), we impose the auxiliary condition ∂χ

∂X > 0. For instance, a complete self–folding
transformation such as χ(X) = ℓm(X−ℓm)/(ℓ0−ℓm)+ℓ0(X−ℓ0)/(ℓm−ℓ0), which reverses
the location of hydrogel particles at X = ℓ0 and X = ℓm to X = ℓm and X = ℓ0, respectively
is not allowed. At each time t ∈ (0,T ), the boundary points of the undeformed hydrogel ℓ0
and ℓm are transformed to ℓ(t) and ℓm. This leads to the boundary conditions

χ(t, ℓ0) = ℓ(t) and χ(t, ℓm) = ℓm. (7.5)

With the condition ∂χ

∂X
> 0 and boundary conditions (7.5), (7.4) has the unique linear

solution described by

χ(t,X) = ℓm− ℓ(t)
ℓm− ℓ0

X+ ℓ(t)− ℓ0
ℓm− ℓ0

. (7.6)

Use this and (7.3) to obtain the following expression for the stress in the hydrogel, for every
X ∈ (ℓ(t), ℓm)

σH(X) = ν
ℓm− ℓ(t)
ℓm− ℓ0

−ϑ
(
ℓm− ℓ(t)
ℓm− ℓ0

)−1
. (7.7)

Dimensions of σH, ν, and ϑ are presented in Table 7.1.

Remark 7.1 (Spatial variation of stress in the hydrogel). Note that for a fixed time, σH is
a constant as in (7.7) and depends only on the tumour radius ℓ(t). The spatial constancy
of σH results from (7.3), wherein G is the spatial derivative of deformation in the hydrogel.
Since the deformation is linear as provided in (7.6), the derivative G= (ℓm−ℓ(t))/(ℓm−ℓ0)
is a constant at each time.
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In the sequel, it is assumed that

(A.1) ϑ≥ ν, so that σH is negative.

Assumption (A.1) ensures that the stress generated in the hydrogel always acts against
the tumour growth. If ν > ϑ, then σH becomes positive for ℓ(t)< ℓm− (ℓm− ℓ0)

√
ϑ/ν, see

Figure 7.2(b), and it asserts that the stress in the hydrogel favours tumour growth, which
is physically not possible.
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(a) ϑ = 2, ν = 0.1
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Figure 7.2: Variation of σH with respect to ℓ(t) ∈ (0,1) for ν < ϑ and ϑ < ν.

7.2.2 Biphasic tumour growth
The tumour is construed as an agglomeration of two interacting phases. The tumour cells
constitute the cell phase and the fluid medium in which the cells are suspended constitute
the fluid phase. The model variables are described in Table 7.1, and they are functions of
time and space. Observe that the tumour growth variables in Table 7.1 are the same as
that of the BBL model, see Table 1.2.
The main assumptions on tumour growth are as follows:

(A.2) The tumour comprises only cells and fluid, and hence no voids are present. This
leads to α+β = 1.

(A.3) The cell and fluid phases are incompressible with the same constant densities.
(A.4) The cell phase is viscous and the fluid phase is inviscid.
(A.5) The tumour is symmetric with respect to x = 0, which leads to uα(t,0) = 0 =

uβ(t,0) and ∂c
∂x(t,0) = 0.

The derivation of the model equations are detailed in Section 1.5. The governing equations
for the tumour is defined in the time–space domain DT . The coordinates in DT are denoted
by (t,x). Then, it holds for every (t,x) ∈DT

∂α

∂t
+ ∂

∂x
(uαα) = qα (7.8)
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Tumour

Variable or Parameter Notation DimensionCell phase Fluid phase
Volume fraction α β 1

Velocity uα uβ LT−1

Pressure pα pβ ML−1T−2

Stress σα σβ ML−1T−2

Force exerted by one phase
on the other

Fαβ Fβα ML−2T−2

Net production rate Fα Fβ T−1

Viscosity µα - ML−1T−1

Intracellular force
coefficient

γ - ML−1T−2

Traction coefficients k,k1 ML−3T−1

Cell close packing density αR 1

Hydrogel Hydrogel stress σH ML−1T−2

Compressibility parameters ϑ, ν ML−1T−2

Table 7.1: Model variables, parameters, and source terms. Here, M, L, and T, refer to
mass, length, and time.

2µα
∂

∂x

(
α
∂uα

∂x

)
= k1α

1−α
uα + ∂

∂x
(αγH (α)), (7.9)

∂c

∂t
= ∂

∂x

(
η
∂c

∂x

)
− Q0αc

1+Q1c
, (7.10)

ℓ′(t) = uα(t, ℓ(t)). (7.11)

Recall that

qα = α(1−α) S0c

1+S1c︸ ︷︷ ︸
B(α,c)−birth rate

− S2 +S3c

1+S4c
α︸ ︷︷ ︸

D(α,c)−death rate

and H (α) = (α−αR)+

(1−α)2

Remark 7.2 (variability of η). In general, η may not be a constant since the rate of
diffusion depends on the medium through which the nutrient diffuses. The tumour becomes
more closely packed as the cell volume fraction increases, and it impedes the diffusion of
the nutrient. This scenario can be modelled by setting the diffusivity as a function of the
cell volume fraction. Also, the nutrient may be advected with the phase in which it is
distributed. The advection term is excluded in (7.10) as it is considered negligible compared
to the diffusion.
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Initial and boundary conditions
The initial conditions are, for every x ∈ (0, ℓ0)

α(0,x) = α0(x) and c(0,x) = c0(x).

The assumption (A.5) yields the following two boundary conditions at x = 0; for every
t ∈ (0,T )

uα(t,0) = 0 = ∂c

∂x
(t,0).

The fluid is allowed to freely flow across the boundary x = ℓ(t) and hence pβ|ℓ(t) = 0.
However, we neglect the fluid pore pressure experienced in the hydrogel. The continuity of
stress at the tumour–hydrogel interface yields, for each t ∈ (0,T ) and x= ℓ(t)

2µα
∂uα

∂x
(t, ℓ(t))−γH (α(t, ℓ(t))) = σH

|ℓ(t), (7.12)

where σH is given in (7.7). The left hand side of (7.12) is the stress in the cell phase at
x= ℓ(t) (sum of viscous effects and fluid pressure). The nutrient concentration is assumed
to be a constant maximum at x= 0, which yields for every t ∈ (0,T )

c(t, ℓ(t)) = cout.

Interaction between hydrogel and tumour
The tumour and hydrogel kinetics are coupled through (7.12) (continuity of stress) and (7.7)
(stress in hydrogel), see Figure 7.3. We note that:

• Since σH is negative, see assumption (A.1), (7.12) shows that the cell phase stress, σα,
is negative at x= ℓ(t). This implies that the tumour cells experience a force (acting
to the left) against their outward growth at x = ℓ(t), see Figure 7.1, which retards
the growth rate. The growth rate becomes slower as σH becomes more negative.

• Tumour growth affects the stress in the hydrogel through (7.7). Observe that σH is
a function of ℓ(t). Let dℓ(t)σ

H be the derivative of σH with respect to ℓ(t). Since
dℓ(t)σ

H < 0, σH decreases as ℓ(t) increases, see Figure 7.2(a), and the tumour receives
a higher opposing force against its growth.

Since the above two kinetics are opposite to each other, two possibilities exists: (a) the
tumour grows till a steady state radius is achieved, wherein stress in the tumour is just
adequate enough to resist the compressive stress in the hydrogel and not able to further
compress the hydrogel or (b) stress in the hydrogel is too strong so that it compresses (and
eventually annihilates) the tumour.
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cell velocity
uα : Eqn. (7.9)

hydrogel stress
σH : Eqn. (7.7)

tumour radius
ℓ(t) : Eqn. (7.11)

coupled via.
Eqn. (7.12)

Figure 7.3: Mutual coupling between cell velocity, hydrogel stress, and tumour radius.

Consolidated model
The model variables of tumour growth are cell volume fraction, cell velocity, nutrient con-
centration and tumour radius governed by (7.8), (7.9), (7.10), and (7.11), respectively. The
stress generated in the hydrogel at x = ℓ(t) interacts with the tumour model variables
through (7.12).

7.3 Dimensionless model
The rescaled dimensionless variables are provided in Table 7.2. Here, tdim is (1 +

Dimensional quantities Dimensionless quantities

Space and time x′ = x

ℓdim
, t′ = t

tdim

cell volume fraction α′ = α,s1 = S1cout, s2 = tdimS2, s3 = tdimS3
cout

, s4 = S4cout

cell velocity u′
α = tdim

ℓd
uα, k

′ = k1ℓ2
dim

γtdim
, µ= 2µα

γtdim
, γ′ = γ/γ = 1.

nutrient concentration c′ = c

cout
,Q=Q0tdim, Q̂1 =Q1cout, η′ = tdimη

ℓ2dim

tumour radius ℓ′ = ℓ

ℓdim
, and ℓ′0 = ℓ0

ℓdim

hydrogel ν ′ = ν

γ
, ϑ′ = ϑ

γ
, ℓ′m = ℓm

ℓdim

Table 7.2: Dimensionless variables and parameters

S1cout)/S0cout, which is the time required to produce unit volume fraction of cells at the
highest nutrient concentration. The space scaling ℓdim is taken as ℓm so that the scaled
box dimension ℓ′m becomes unity. Also, we define H (α) := Σ(α)/γ = (α−αR)+/(1−α)2.
Variables with prime symbols are dimensionless. The prime symbols, subscripts α and
β are dropped in the dimensionless model for notational simplicity. In what follows, the
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rescaled domains DT = (0,T )×(0,1) and DT ⊂DT are dimensionless. The nutrient diffuses
at a rate much faster than that of tumour cells mitosis, which justifies the quasi–steady
state assumption that has been applied to (7.13c) in the following.

The dimensionless model for tumour–hydrogel dynamics is as follows: for all (t,x) ∈
DT it holds

∂α

∂t
+ ∂

∂x
(uα) = αf(α,c), (7.13a)

−µ ∂

∂x

(
α
∂u

∂x

)
+ kαu

1−α
=− ∂

∂x
(αH (α)), (7.13b)

∂

∂x

(
η
∂c

∂x

)
= Qαc

1+ Q̂1c
, (7.13c)

ℓ′(t) = u(t, ℓ(t)), (7.13d)

where the stress in the hydrogel, σH is

σH = ν
1− ℓ(t)
1− ℓ0

−ϑ
(

1− ℓ(t)
1− ℓ0

)−1
. (7.13e)

The initial conditions are

α(0,x) = α0(x), c(0,x) = c0(x) ∀x ∈ (0, ℓ0), ℓ(0) = ℓ0, (7.13f)

and boundary conditions are

u(t,0) = 0, µ∂u
∂x

(t, ℓ(t))−H (α(t, ℓ(t))) = σH, (7.13g)

∂c

∂x
(t,0) = 0, and c(t, ℓ(t)) = 1 ∀t ∈ (0,T ). (7.13h)

Here,
f(α,c) = (1+ s1)(1−α)c

(1+ s1c)
− (s2 + s3c)

(1+ s4c)
.

Differences between BBL model and (7.13)

The total stress experienced at the tumour boundary is the sum of mechanical stress and
fluid pressure, see LHS of second equation in (7.13g). The total stress at the tumour
boundary is zero in the BBL model from the balance of stresses and since external stresses
are absent. However, in (7.13) this is not zero but σH. The nondimensionalisation employed
in (7.13) is also different from that in the BBL model. The variables in BBL model are
spatially scaled using the initial tumour radius, ℓ0. In (7.13), size of the box, ℓm, is used to
scale the model variables. This difference in scaling is reflected in the numerical values of
k, η, and ℓ0 in (7.13), see Tables 7.2 and 7.3. In the BBL model (k,η,ℓ0) is (1,1,1), while
the corresponding values in (7.13) are (1600,1/1600,1/40).
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Remark 7.3 (Dimensionless compressibility parameters). Observe that the dimensionless
compressibility parameters ν and ϑ in (7.13e) do not explicitly depend on ℓm. This may
strike as counter-intuitive since the rescaled hydrogel ought to exhibit a lesser or higher
compressibility upon stretching or compressing, respectively, since any quantity υ with the
dimension of stress is rescaled into a dimensionless version by the formula

υ′ = υ× (length scale× (time scale)2)/(mass scale).

The dependence of ν and ϑ on ℓm is hidden in the rescaling using the intercellular force
coefficient, γ. Note that γ also depends on the box dimension ℓm and achieves a lesser or
higher value when rescaled to a larger or smaller domain. Since γ and the compressibility
parameters are rescaled using the same length scale, the effect of box dimension is made
implicit while taking the fractions γ/γ, ν/γ, and ϑ/γ as displayed in rows three and six in
Table 7.2.

7.4 Discrete scheme
In the discrete scheme, see Definition 7.5, the tumour boundary ℓ(t) is explicitly tracked
using (7.14d). In other chapters, the model is recast into an extended domain and the
ODE (7.14d) is eliminated. Then, the tumour boundary is recovered using the discrete
cell volume fraction and the threshold value. The reason to explicitly track the tumour
boundary is to isolate the effect of hydrogel compressibility parameters ϑ and ν on the
tumour radius. To the best of our knowledge, the influence of these parameters on the
tumour size have not been investigated before. Since the threshold value also influences
the location of tumour radius, it becomes difficult to study the individual effect of hydrogel
compressibility. Since the model is purely 1D the scaling and explicit tracking is feasible.

The model (7.13a)–(7.13d) is defined on the time dependent domain (0, ℓ(t)) for each
time t ∈ (0,T ). The domain (0, ℓ(t)) is rescaled to the unit interval (0,1) by using the
transformation, ξ = x/ℓ(t) for every x ∈ (0, ℓ(t)), see Section 1.5 for further details. The
rescaled model reads as, for every D1,T := (t,ξ) ∈ (0,T )× (0,1), it holds

∂α

∂t
− ξ
ℓ

dℓ
dt
∂α

∂ξ
+ 1
ℓ

∂(uα)
∂ξ

= αf(α,c), (7.14a)

ℓ2kαu

1−α
−µ ∂

∂ξ

(
α
∂u

∂ξ

)
= − ℓ ∂

∂ξ
H (α), (7.14b)

∂

∂ξ

(
η
∂c

∂ξ

)
= Qℓ2αc

1+ Q̂1c
, and (7.14c)

ℓ′(t) = u(t,1). (7.14d)

The transformed initial conditions are

α(0, ξ) = α0(ξ), c(0, ξ) = c0(ξ) ∀ξ ∈ Ω(0), ℓ(0) = ℓ0,

177



and the boundary conditions are

u(t,0) = 0, µα(t,1)∂u
∂ξ

(t,1) = ℓ(t)
(
H (α(t,1))+σH

|ξ=1
)
, (7.15)

∂c

∂ξ
(t,0) = 0, and c(t,1) = 1 ∀t ∈ (0,T ).

Observe that (7.14a) can be written in the following conservative form

∂α

∂t
+ ∂

∂ξ

(
α

ℓ(t)
(u− ξ u(t,1))

)
= αf(α,c)− α

ℓ(t)
u(t,1). (7.16)

Since (7.16) is a hyperbolic conservation law, it is discretised using an upwind finite volume
method. Let 0 = ξ−1/2 < · · ·< ξJ+1/2 = 1 and 0 = t0 < · · ·< tN = T be uniform spatial and
temporal discretisations, respectively. Define h= ξj+1/2− ξj−1/2 and δ = tn+1− tn. Define
Kj := (ξj−1/2, ξj+1/2) for 0≤ j ≤ J and Tn := (tn, tn+1) for 0≤ n < N .

Definition 7.4 (Discrete average). For any real valued function f on R, define the discrete
average of f on the interval Kj by {{f}}Kj

:= (f(ξj−1/2)+f(ξj+1/2))/2, where j = 0, . . . ,J .

The cell velocity equation (7.14b) is discretised using Lagrange P1 finite element
method and the nutrient equation (7.14c) using the mass lumped P1 finite element method.
Recall that a+ = max(a,0) and a− =−min(a,0) from Section 1.4.

Definition 7.5 (Discrete scheme). Initial data approximation: Define:

• α0
h by α0

h := α0
j on Kj, for j = 0, . . . ,J , where α0

j =
�
α0(ξ)dξ.

• c0h by ch|Kj
∈P1(Kj) for j = 0, · · · ,J where c0h(xj−1/2) = c0(xj−1/2) for j = 0, . . . ,J+1.

Updation: Construct a finite sequence of four tuple of functions (αn
h,u

n
h, c

n
h, ℓ

n
h){1≤n≤N}

on (0,1) such that for every 1≤ n≤N , it holds:

(DS.a) Define ℓnh := ℓn−1
h + δun−1

h (1).

(DS.b) Set for j = 0, . . . ,J

vn−1
j+1/2 := 1

ℓnh

(
un−1

h (ξj+1/2)− ξj+1/2u
n−1
h (1)

)
,

bn−1
j := {{(1+ s1)cn−1

h /(1+ s1c
n−1
h )}}Kj

, and
dn−1

j := {{(s2 + s3c
n−1
h )/(1+ s4c

n−1
h )}}Kj

.

For j = 0, . . . ,J define αn
h := αn

j on Kj, where

αn
j = αn−1

j − δ

h

((
vn−1,+

j+1/2 α
n−1
j −vn−1,−

j+1/2 α
n−1
j+1

)
−
(
vn−1,+

j−1/2 α
n−1
j−1 −v

n−1,−
j−1/2 α

n−1
j

))
+ δαn−1

j (1−αn−1
j )bn−1

j − δαn
j d

n−1
j − δ

ℓnh

(
un−1,+

h (t,1)αn−1
j −un,−1−

h (t,1)αn
j

)
.
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(DS.c) Set the finite element space of piecewise affine polynomials from (0,1) to R with
homogeneous boundary condition at ξ = 0 by

Vh =
{
vh ∈ C 0([0,1]) : vh|Kj

∈ P1(Kj) ,0≤ j ≤ J, vh(0) = 0
}
.

Define un
h ∈ Vh such that, for every vh ∈ Vh, it holds au(un

h,vh) = Lh(vh), where

au(un
h,v

n
h) :=

� 1

0
k(ℓnh)2 αn

h

1−αn
h

un
hvh dξ+µ

� 1

0
αn

h
∂un

h

∂ξ

∂vh

∂ξ
dξ, and

Lh(vh) :=
� 1

0
ℓnhH (αn

h)∂vh

∂ξ
dξ+ ℓnh

ν 1− ℓnh
1− ℓ0

−ϑ
(

1− ℓnh
1− ℓ0

)−1vh(1).

(DS.d) Set Kj = (ξj−1/2− h/2, ξj−1/2 + h/2), 1 ≤ j ≤ J , K̃0 = (0,h/2), and K̃J+1 =
(1−h/2,1). Define the following finite dimensional vector spaces on (0,1) by

Wh :=
{
wh ∈ C 0([0,1]) : vh|Kj

∈ P1(Kj) ,0≤ j ≤ J
}
,

Wh,0 := {wh ∈Wh : wh(1) = 0}, and

Wh,ml :=
{
wh : wh =

J∑
j=0

wjχχχK̃j
, wj ∈ R, 0≤ j ≤ J

}
,

and the mass lumping operator Πh : C 0([0,1])→Sh,ml by Πhw :=∑J
j=0w(xj)χχχK̃j

.
Then, cnh ∈Wh satisfies cnh(1) = 1 and for every wh ∈Wh, an

2 (cnh,wh) = 0, where

an
2 (cnh,wh) = η

� 1

0

∂cn
h

∂ξ

∂wh

∂ξ
dξ+

� 1

0

Q(ℓnh)2αn
h

1+ Q̂1Πhc
n−1
h

Πhc
n
h Πhwh dξ.

Differences between schemes in Definitions 7.5 and 2.4

The discrete schemes in Definitions 7.5 and 2.4 are different in three aspects.

• The upwind finite volume scheme is different as the flux function in (7.16) is
α

ℓ(t) (u− ξ u(t,1)), which was uα in the hyperbolic conservation laws in BBL, extended,
and threshold models.

• The Neumann boundary condition for the velocity equation is not homogeneous as
the stress in the hydrogel is nonzero, see (7.15).

• The ordinary differential equation ℓ′(t) = u(t, ℓ(t)) is solved using an explicit Euler
scheme, instead of extending the model and recovering the tumour radius using the
cell volume fraction and threshold value.
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Parameter Value Parameter Value
k 1600 µ 1
Q 1 Q̂1 0

s1, s4 10 s2, s3 0.5
αR 0.8 η 1/1600
α0, c0 1 ℓ0 1

Table 7.3: Model parameters (source: see [1])

7.5 Numerical simulations
The parameters used for the numerical simulations are dimensionless. The values that
are fixed in this section are given in Table 7.3. Two sets of numerical experiments are
conducted in this section. In Subsection 7.5.1, the growth in free suspension, wherein
hydrogel is absent, is simulated. The effect of stress from the hydrogel on tumour growth
is studied in Subsection 7.5.2.

7.5.1 Free suspension growth

The absence of hydrogel is simulated by setting ϑ= 0 = ν. It follows that σH = 0 and the
tumour does not experience an opposing stress against its growth. Therefore, the tumour
can grow freely if sufficient nutrient is available. It is well known that sufficiently large
tumours develop a central zone of dead cells, called the necrotic core, due to nutrient defi-
ciency. In Figure 7.4(a), the formation of necrotic core can be observed near t= 20, where
the volume fraction at the tumour centre and its vicinity significantly reduces. The forma-
tion of the necrotic core also influences the velocity of tumour boundary, see Figure 7.4(b);
the slope of the function ℓ(t) vs. t curve decreases at t= 20. The formation of the necrotic
core aids to release tumour stress by redistributing cells at the boundary x= ℓ(t) and the
necrotic core. Small tumours cannot release stress by distributing cells at the necrotic core.
As a result, stress is predominantly directed towards the periphery, which accelerates the
tumour growth. The qualitative behaviour of the model variables are different before and
after the formation of the necrotic core. To show this difference, enlarged graphs of model
variables on 0≤ t≤ 20 are displayed in the second row of Figure 7.5. The initial transient
before the formation of the necrotic core is a characteristic feature of small sized tumours.

Nutrient concentration follows the same profile at every time; it monotonically in-
creases from x = 0 to x = ℓ(t). The volume fraction monotonically decreases from x = 0
to x = ℓ(t) before the formation of the necrotic core, see Figure 7.5(f). Once the necrotic
core forms, cell volume fraction follows a travelling wave pattern with respect to time, in
which the volume fraction is minimal at the tumour center x= 0, increasing and stabilising
towards x = ℓ(t), see Figure 7.5(b). The velocity is positive and monotonically increasing
before the formation of the necrotic core, see Figure 7.5(g). This explains the rightward

180



(a) Volume fraction as a function of space
(distance from tumour center) and time for
free suspension growth.

0 50 100 150 200
0
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0.6

initial transient ends with
necrotic core formation

t

ℓ(t)

(b) Tumour radius vs. time for free suspen-
sion growth.

Figure 7.4: Formation of necrotic core in free suspension growth

nutr. concentration

(a)

cell volume frac.

(b)

cell velocity

(c)

cell stress

(d)

(e) (f) (g) (h)

Figure 7.5: In each subfigure, the x-axis represents the distance from the tumour center (x=
0) and y-axis the model variable captioned above in the respective column. Upper row: spa-
tial variation of model variables at time steps t ∈ {5,10,15,20,30,40,50,60,70,80,90,100}
indicated by the legends on the last column. Lower row: Enlarged view of (blue box in the
upper row) spatial variation of model variables at time steps t ∈ {5,10,15,20}.
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motion of cells, see Figure 7.1. The cell velocity is zero in the necrotic region. It then
decreases to a negative minimum showing movement of cells towards the necrotic region,
and increases to attain a positive maximum at x = ℓ(t), see Figure 7.5(c), indicating the
movement of cells towards x = ℓ(t). This trend is supported by the stress profiles, σα, in
Figures 7.5(d) and 7.5(h). The stress is negative, which shows compression in the tumour.
The stress reaches a negative maximum at the tumour centre and increases to zero at
x = ℓ(t) before the formation of the necrotic core. The development of the necrotic core
reduces the stress there to zero. The stress attains a negative maximum in the actively
proliferating region and increases to zero at x= ℓ(t). The vanishing stresses at x= ℓ(t) and
in the necrotic centre points to the redistribution of cells towards these two regions.

Remark 7.6 (BBL model as a special case of (7.13)). The BBL mode manifests as a
special case of (7.13) by setting ϑ= ν = 0. The profiles of the model variables α, u, and c,
displayed in Figure 7.5 are same as that of in Chapter 1 (see Figure 1.7) up to a scaling of
the x–axis. The scale difference in x–axis is due to the difference in nondimensionalisation
employed in these two models. In this sense, (7.13) is more generic than the previous works
and presents a more realistic version of in vitro tumour growth.

7.5.2 Stress controlled growth for tumours
In a stress controlled environment tumour exhibits three types of qualitative behaviours
depending on the compressibility parameters, ν and ϑ. These are illustrated in Figure 7.6.
All experiments in Figure 7.6 are conducted with ν = 0. Since the nutrient concentration
exhibits the same behaviour as shown in Figure 7.5(a) in all experiments, its graphs are
not included in the sequel. The first to fourth columns in Figure 7.6 represent the variation
of volume fraction, cell velocity, stress in tumour-hydrogel continuum, and tumour radius,
respectively.

The y-axis in the third column is σT G, where σT G := σα if 0≤ x≤ ℓ(t) and σT G := σH

if ℓ(t)≤ x≤ 1. It can be observed that σT G is continuous at the tumour boundary, indicated
by coloured circles in each line plot of Figures 7.6(c), 7.6(g), and 7.6(k), and it follows that
σα = σH at x = ℓ(t). Since σα is strictly negative at x = ℓ(t), tumour growth is impeded.
On the contrary, in free suspension growth, the compressive stress vanishes at x= ℓ(t), see
Figure 7.5(d), which allows unhindered growth.

When ϑ is adequately low (ϑ = 0.5), the tumour grows to a size that allows the for-
mation of the necrotic core as shown in the first row of Figure 7.6. The volume fraction,
velocity, and stress follows a wave like behaviour (with a time dependent wave speed). Since
the stress becomes more negative as ℓ(t) increases as in Figure 7.6(c), the cell velocity ap-
proaches zero and the tumour radius slowly stabilises. Along with this wave like behaviour
pattern this negative stress stacks the line plots in Figures 7.6(a), 7.6(b), and 7.6(c) closer
as time evolves. Such a growth pattern is referred to as post–necrotic growth in the sequel.

For moderately high values of ϑ (ϑ = 2), the tumour grows but cannot reach a size
that facilitates the formation of a necrotic core as shown in the second row of Figure 7.6.
Here, the cell volume fraction, velocity, and stress profiles remain in the initial transient
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Figure 7.6: Effect of ϑ on tumour growth (here ν = 0). The variables are indicated by
the title of each row. From the first to third columns, the x-axis is the distance from the
tumour centre. In the fourth column, the x-axis is time. Each coloured line in the first to
third columns represent the variation of the respective variable at a time as indicated in
the legend.
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stage. The tumour stabilises much faster, see Figure 7.6(h), than in the case of ϑ = 0.5.
Since the compressive stress from the hydrogel is much higher the stabilising radius is
smaller than that when ϑ = 0.5. This behaviour is termed as pre–necrotic growth in the
sequel.

When ϑ is large (ϑ = 20), the hydrogel stress becomes exceedingly negative and the
tumour fails to grow. In this case, the hydrogel compresses the tumour, which leads to its
eventual decay as shown in the third row of Figure 7.6. This growth pattern is termed as
tumour decay.
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(a) Results with ν = 0.1
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(b) Results with ϑ = 1

Figure 7.7: Effect of compressiblity parameters on ℓ(t) profiles.

The effect of ν on tumour growth is opposite to that of ϑ. A high value of ν asserts
that the hydrogel is more compressible and favours tumour growth. This is illustrated in
Figure 7.7(b), wherein ϑ is set as unity. It can be observed that the tumour radius stabilises
to higher values as ν increases. On the contrary, the tumour radius stabilises to smaller
values as ϑ increases as shown in Figure 7.7(a), where ν is set as 0.1.

The variation of limiting radius (ℓs = limt→∞ ℓ(t)) with respect to ν and ϑ is illustrated
in Figure 7.8. To numerically compute the limiting radius, the model (7.13) is solved for a
sufficiently large time – in this case, T = 1000 – and the limiting radius is defined as the
truncated value ℓs = ℓ(1000). The values of ϑ and ν for which the tumour exhibits post
and pre–necrotic growth behaviours are shown as two separate zones in Figure 7.8. For
(ϑ,ν) above the red line in Figure 7.8, the tumour achieves a limiting size greater that
ℓs = 0.01 (see Figure 7.4(b)), which marks the onset of post–necrotic growth behaviour, see
Figure 7.6. For (ϑ,ν) below the red line, the tumour fails to attain this size and remains
in the pre–necrotic growth behaviour forever (at least until T = 1000). Also, it is worth
noticing that the tumour attains a limiting radius close to ℓs = 0.9 only for very small
values of ϑ (towards the bottom-left corner in Figure 7.8). Otherwise, the tumour attains
a limiting radius less than approximately ℓs = 0.4, which indicates the predominant effect
of external stress in controlling the tumour size. In Figure 7.8, the decay zone for the
tumour is not indicated to obtain a better resolution of the post and pre–necrotic growth
behaviours. It has been observed numerically that for ϑ ≥ 11.75 the tumour exhibits a
decay behaviour.
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Figure 7.8: Variation of the limiting radius with respect to ϑ and ν for ν ≤ ϑ. The region
above and below the red demarcation indicates the values of (ϑ,ν), where the tumour
attains post and pre necrotic behaviours, respectively.

7.5.3 Behaviour of tumour radius near the box boundary
The evolution of tumour radius in free suspension and in hydrogel medium are different.
When the tumour grows in free suspension, depending on the choice of parameters it
may evolve to a travelling wave solution or a steady state solution (due to the counter–
acting effects of tumour expansion and the necrotic core). In the former case, the tumour
radius increases monotonically and in the latter case the tumour radius becomes a constant
eventually.

When tumour grows in a hydrogel, then the tumour radius is bound to attain a steady
state. If u(t, ℓ(t)) is nonpositive for every t, then the tumour will eventually decay as shown
in Figure 7.6(l).

When u(t, ℓ(t)) is nonnegative for every t, it can be proved that u(t, ℓ(t)) asymptotes
to zero as ℓ(t) approaches the box dimension, see Figure 7.1. An analytical proof of this is
presented in Theorem 7.7. Here, we assume that the volume fraction is bounded. Then, it
is established that the boundary velocity u(t, ℓ(t)) approaches zero as ℓ(t) approaches the
box dimension, unity in this case. As the tumour expands, the polymer molecules in the
hydrogel are stacked together and forced to occupy a smaller physical space. Eventually, a
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stage will be attained, wherein the short range molecular repulsion between the hydrogel
molecules are dominant and the hydrogel becomes incompressible. Since the hydrogel
occupies a 1D domain in this model, this incompressibility leads to length invariance of the
hydrogel and hence the tumour.

Theorem 7.7 (Steady state of tumour radius). Let (α,u,c,ℓ) be a solution of (7.13) such
that u(t, ℓ(t))≥ 0 for every t≥ 0. If ϑ≥ ν, then it holds limℓ(t)→1 ℓ

′(t) = 0.

Proof. Multiply (7.13b) by u(t,x) on both sides and apply integration by parts to obtain
� ℓ(t)

0

kα

1−α
u2dx+

� ℓ(t)

0
µα

(
∂u

∂x

)2
dx=

� ℓ(t)

0
H (α)∂u

∂x
dx+u(t, ℓ(t))σH

|ℓ(t). (7.17)

Since u(t, ℓ(t))≥ 0 (by assumption), it follows u(t, ℓ(t))σH
|ℓ(t) ≤ 0, whence

� ℓ(t)

0

kα

1−α
u2dx+

� ℓ(t)

0
µα

(
∂u

∂x

)2
dx≤

� ℓ(t)

0
H (α)∂u

∂x
dx.

Use Cauchy–Schwartz inequality and 0< αm ≤ α≤ αM < 1 to arrive at

µαm

� ℓ(t)

0

(
∂u

∂x

)2
dx

1/2

≤
√
ℓ(t)αM|αM−αR|

|1−αM|2
. (7.18)

Since the left hand side of (7.17) is nonnegative, we obtain u(t, ℓ(t)) ≤
1

|σH
|ℓ(t)|

� ℓ(t)
0 H (α)∂u

∂x dx. Then, Cauchy–Schwartz inequality and (7.18) leads to

u(t, ℓ(t))≤ 1
µαm|σH

|ℓ(t)|

(
αM|αM−αR|
|1−αM|2

)2

.

Since |σH
|ℓ(t)| approaches infinity as ℓ(t) tends to 1, it follows limℓ(t)→1u(t, ℓ(t)) = 0, and

thereby limℓ(t)→1 ℓ
′(t) = 0.

Remark 7.8. Theorem 7.7 does not explicitly describe the behaviour of the tumour radius
as time evolves. Rather, it asserts that the cell velocity asymptotically becomes zero as ℓ(t)
approaches the box dimension (unity here). That is, the tumour radius is bound to follow
a profile as in Figure 7.6(h), wherein ℓ(t) monotonically increases first and then plateaus
into a stationary value. This theoretical inference is consistent with the experimental ob-
servations in G. Helminger [89]. This is applicable when u(t, ℓ(t)) is nonpositive as well,
since (7.17) and σH

|ℓ(t) ̸= 0 implies u(t, ℓ(t)) asymptotes to zero as ℓ(t) vanishes. As a result,
the tumour decay also shows a semi–sigmoid shape as in Figure 7.6(l).
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7.6 Conclusions
In this chapter a continuum model of tumour growth in a hydrogel medium is derived. The
tumour is modelled as a biphasic mixture of cell and fluid phases and the hydrogel as a
nonlinear elastic material. The tumour and hydrogel kinetics are coupled through a Neu-
mann boundary condition, which asserts the continuity of the stress at tumour-hydrogel
interface. The model is discretised using a combination of finite volume and finite element
schemes. It has been observed that the tumour exhibits three different types of behaviours
depending on the hydrogel compressibility; (a) travelling wave with necrotic core for com-
pressible hydrogels (b) initial transient without necrotic core for moderately incompressible
hydrogels, and (c) tumour decay for highly incompressible hydrogels. Theorem 7.7 shows
that the tumour radius is bound to attain a steady state profile near the box boundary.
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Chapter 8

Summary and future work

This chapter summarises the results and conclusions in this thesis and presents some pos-
sible future extensions.

8.1 Summary
In this thesis three aspects of mathematical study of tumour growth are explored:

• mathematical modelling in Chapters 2, 3, and 7,
• scientific computing in Chapters 2 and 5, and
• convergence analysis and existence of solutions in Chapters 4 and 6.

The summary and applications of models in each chapter is presented in Table 8.1. The
basic modelling framework in this thesis is obtained from the BBL model in (1.21). The
time–dependent boundary in the BBL model offers several numerical and theoretical chal-
lenges such as re-meshing, ill–posed models due to degenerate coefficients, and uncontrol-
lable error propagation (see Section 2.1). To mitigate a few of these, a different variant
of the BBL model (1.21), termed as extended model, is presented in Chapter 2. In the
extended model, the cell volume fraction equation is defined on a fixed domain (0, ℓm) and
the tumour radius, ℓ(t), is characterised as ℓ(t) := min{y : ∀y ≤ x ≤ ℓm, α(t,x) = 0} (see
Section 2.2). In Theorem 2.3, BBL and extended models are established to be equiva-
lent under appropriate conditions. Several numerical experiments are conducted to verify
the robustness of the proposed numerical scheme (see Section 2.4). Here, a fixed dis-
cretisation of the domain (0, ℓm) is used. The cell volume fraction equation is approxi-
mated using upwind and MUSCL schemes. The discrete tumour boundary is defined as
ℓ(tn) := min{y : ∀y ≤ x ≤ ℓm, αh(tn,x) ≤ αthr} at a time step tn, where αh(tn, ·) is the
discrete volume fraction at time tn and αthr is a small positive number. The elliptic equa-
tion (on the cell velocity) and parabolic equation (on the nutrient concentration) are solved
using Lagrange P1 finite element method and a mass lumped P1 finite element method,
respectively. The threshold value, αthr, is crucial in improving the accuracy of ℓ(tn) and
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Chapter Model type Relevance/Applications

1– 4 free suspension
growth

Basic framework for complex and realistic models
in multidimensions, idea of extended and

threshold models that eliminates re-meshing,
proof of existence of a weak solution.

5

free suspension
growth (NUM),
in vitro and in

vivo (NLM)

Well defined model in 2D and 3D, idea of
threshold model is extended to 2D and 3D,
inclusion of diffusivity of nutrient across the
tissue or medium surrounding a tumour.

6 in vivo
strong BV estimate on FV solutions of nonlinear
conservation laws, existence of a weak solution

for the ductal carcinoma model

7 in vitro

Biphasic–hyperelastic model of tumour in a
polymeric medium, the effect of compressibility is

studied, potential extension by including the
effect of drugs, basic framework for

stress–dependent growth models such as brain
tumours.

Table 8.1: Applicability of models in each chapter

obtaining many theoretical results on the model. The numerical solutions are tested against
a simplified model with a priori known exact solutions. The results showed that the nu-
merical solutions provide a good approximation of the exact solution. The scheme is used
to obtain the numerical solution of the extended model and the results were in agreement
with that from Section 1.5.

The extended model and the subsequent numerical scheme presented in Chapter 2
helps to eliminate the time–dependent boundary from the BBL model. However, the lack
of uniform bounds of cell volume fraction and coercivity of the cell velocity inside the
computational domain DT := (0,T )× (0, ℓm) are two major drawbacks of the extended
model. In Chapter 3, another variant of the BBL model called the threshold model is
presented. In the threshold model, the tumour boundary is defined as ℓ̃(t) = min{x :
α(t,x)≤ αthr on (x,ℓm)}. The source term in the volume fraction equation is modified as
(α−αthr)f(α,c) and force term H (α) in the cell velocity equation is modified as (α−
αthr)+/(1−α)2. The justifications for these modifications are explained in Section 3.4.2.
A weak solution for the threshold model, termed as threshold solution, is introduced in
Chapter 3. A discrete scheme is presented for the threshold model, which is based on
the scheme introduced in Chapter 2 for the extended model. The discrete schemes in
Definitions 2.4 an 3.2 differ in the source terms of (3.5) and (3.8). The numerical solutions
obtained Section 3.5 are in very good agreement with those from Chapters 1 and 2.

In Chapter 4, it is established that the discrete solutions from Chapter 3 converge
(up to a subsequence) to a threshold solution. This process also proves the existence
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of a threshold solution. Uniform bounds of the discrete solution in appropriate normed
spaces in presented in Theorem 4.2. The convergence of discrete solutions and existence
of a threshold solutions are presented in Theorem 4.3. The main challenge in proving
Theorem 4.2 is to obtain uniformly bounded variation estimate on the discrete volume
fraction, which is achieved in Propositions 4.15 and 4.16. A discrete Aubin-Simon theorem
is used obtain strong convergence of the discrete nutrient concentration in Proposition 4.24.
This is crucial as the source terms of (3.5) involves nonlinear terms of discrete nutrient
concentration and cell volume fraction. The proof of Theorem 4.3 starts by establishing
convergence of the discrete time–space domains in Proposition 4.25. This follows by the
convergences of discrete cell volume fraction, cell velocity, and nutrient concentration in
Propositions 4.26, 4.27, and 4.31, respectively. A brief discussion on the maximal time that
admits the existence of a threshold solution is provided in Section 4.5.

Chapter 5 presents a biphasic continuum model (5.1) for avascular tumour growth
in 2D and 3D, in which the cell and fluid phases follow conservation of mass and momen-
tum. The model variables are the cell volume fraction, cell velocity–fluid pressure system,
and nutrient concentration. A coupled system of a hyperbolic conservation law, a Stokes
equation, and a parabolic diffusion equation governs dynamics of the model variables. The
tumour boundary moves with the normal velocity of the outermost layer of cells, and this
time–dependence is a challenge in designing and implementing a stable and fast numeri-
cal scheme. Similar to the work in Chapter 2, the model is recast into a form where the
hyperbolic equation is defined on a fixed extended domain and we retrieve the tumour
boundary as the interface at which the cell volume fraction becomes zero, see Section 5.4.
The equivalence between the variants is proved in Theorem 5.12. This procedure eliminates
the need to track the tumour boundary explicitly and the computationally expensive re–
meshing of the time–dependent domains. A numerical scheme based on an upwind finite
volume method for the hyperbolic conservation law, Lagrange P2−P1 Taylor–Hood finite
element method for the viscous Stokes system, and mass–lumped finite element method
for the parabolic equation is implemented in two spatial dimensions, and several cases are
studied, see Section 5.5. The versatility of the numerical scheme in catering for irregular
and asymmetric initial tumour geometries is demonstrated. When the nutrient diffusion
equation is defined only in the tumour region, the model depicts growth in free suspension.
On the contrary, when the nutrient diffusion equation is defined in a larger fixed domain,
the model depicts tumour growth in a polymeric gel. Numerical simulations for both cases
are presented and the results are consistent with theoretical and heuristic expectations
such as early linear growth rate and preservation of radial symmetry when the boundary
conditions are symmetric.

The main purpose of Chapter 6 is to derive a strong bounded variation estimate
for finite volume solutions of nonlinear hyperbolic conservation laws of the form ∂tα+
F(t,xxx,α) = 0 and α(0, ·) = α0 in Ω on nonuniform Cartesian grids in Rd, d≥ 2. This result
is crucial in proving the existence of a weak solution for tumour growth models in higher
dimensions. In this chapter, the classical assumption that divxxxFFF = 0 is relaxed to divxxxFFF ∈
BV (Ω). The strong BV estimate on finite volume schemes for nonlinear scalar conservation
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laws in 3D over nonuniform Cartesian grids is also described. A two dimensional tumour
growth model first proposed by S. J. Frank et al. [29] is studied as a prototype.A hyperbolic
conservation law, viscous stokes system, and Poisson equation that respectively governs the
cell volume fraction, cell velocity–pressure system, and nutrient concentration constitute
the model. The existence of weak solution to this model is proved by employing the strong
bounded variation estimate on the cell volume fraction (concentration).

Chapter 7 deals with the mathematical modelling of tumour growth in an external
polymeric medium referred to as hydrogel. The hydrogel is modelled as a nonlinear elastic
material. The tumour is modelled using the framework described in Section 1.5. A Carte-
sian geometry is considered to simplify the modelling and subsequent numerical simulations.
The model variables are cell volume fraction, cell velocity, nutrient concentration, and tu-
mour radius. These variables are respectively governed by a hyperbolic conservation law,
a generalised Stokes equation, a parabolic diffusion equation, and an ordinary differential
equation. The tumour and hydrogel are coupled through a Neumann boundary condition,
which asserts the continuity of stress at the tumour–hydrogel interface. The numerical
scheme employed is a combination of upwind finite volume and finite element schemes.
The qualitative behaviour of tumour growth depends on the hydrogel compressibility. In
the case of highly compressible hydrogel, the tumour grows to a size that admits a travel-
ling wave profile. In this case, the tumour will develop a well differentiated central necrotic
core. For a moderately compressible hydrogel, the tumour fails to grow to an adequate
size that allows a travelling wave profile and exhibits initial transient behaviour. A nearly
incompressible hydrogel compresses the tumour, which leads to its eventual elimination.

8.2 Future Work
The models, numerical schemes, and theoretical results in this thesis present the following
further research problems. In general, the results in this thesis can be adapted to the study
of vascular tumour growth, wound healing closure study, and multiphase mixture models.
• Existence of a threshold solution in 2D and 3D: The existence of a thresh-

old solution in 2D and 3D suffers many critical challenges. An initial step would
be to derive an appropriate compactness result for the discrete time–space domains
∪0≤n≤N ((tn, tn+1)×Ωn

h) (see Definition 5.15). A more demanding task is to derive
a strong bounded variation estimate for the finite volume solution of the cell volume
fraction equation. This in turn requires uniformly bounded supremum norm estimates
on cell velocity and its gradient. The current Sobolev embedding results do not guar-
antee any such estimates. Completion of the aforementioned tasks and establishing
the existence of a threshold solution would be a significant step in the state of the
art of mathematical analysis associated with tumour growth models and probably a
number of other nonlinear systems of PDEs with moving boundaries.

• Stress mediated growth in 2D and 3D: The stress dependent growth of a tumour
in a hydrogel medium, see Chapter 7, is the simplified version in a 1D Cartesian system
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of a 3D phenomenon. A model has been derived in 2D and 3D. The computations
and analysis are more difficult in the higher dimensional setting. The explicit tracking
og the tumour–hydrogel boundary is necessary to compute the stress in the hydrogel
in 2D and 3D. This leads to either re-meshing of time–dependent domains at each
time step or re-mapping od triangles from a reference domain to the time–dependent
domains. The first method is computationally intense and in the second method the
shape–regularity of the reference triangulation will be maintained only for a small
time. Both of these are not ideal for the long time scales associated with a tumour
growth problem. The construction of a proper numerical scheme using finite volume
and finite element methods is also not straight forward on time-dependent meshes.
In Chapter 7, the most convenient result was the exact solution for the deformation
map, which simplified the computations to a great extent. In the 2D and 3D systems
a nonlinear finite element solver is required to account for the nonlinear elasticity. To
the best of our knowledge, satisfactory computational results and numerical analysis
on the aforementioned problems are not available in the literature.

• Four phase model for stress dependent growth: The model presented in
Chapter 7 does not consider the fluid dynamic effects in the hydrogel. Experimentally,
it is observed that the hydrogel can absorb and retain a large amount of water. As
a result, there is a continuous exchange of the fluid medium between the hydrogel
and tumour depending upon the pressure gradient. It is also observed that a tumour
releases protein digesting enzymes that can disintegrate the molecular framework of
the hydrogel near the tumour–hydrogel interface. Consequently, the compressibility
of hydrogel needs to be treated as a nonuniform function of space. An explicit model
describing these phenomena is not derived yet.
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Appendix A

A.1 Monotone upwind scheme for conservation laws
Monotone upwind scheme for conservation laws (MUSCL) provides more accurate solutions
to scalar conservation laws compared to upwind schemes. Given a source function f consider
a prototype conservation law in one spatial and temporal dimension that seeks α such that
for every (t,x) ∈ (0,T )× (a,b)

∂tα+∂x(uα) = f(t,x) and (9.1)
α(0,x) = α0(x),

where u : (0,T )×(a,b)→R is the advection velocity. The interval (a,b) is uniformly discre-
tised into a= x0 < x1 < · · ·< xI = b and (0,T ) into 0 = t0 < t1 < · · ·< tN = T . Define h :=
xi+1−xi and δ := tn+1− tn. Integrate (9.1) over the control volume (tn, tn+1)× (xi,xi+1)
to arrive at
� xi+1

xi

α(tn+1,x)dx−
� xi+1

xi

α(tn,x)dx+
� tn+1

tn

(v(t,xi+1)α(t,xi+1)−v(t,xi)α(t,xi)) dt

=
� tn+1

tn

� xi+1

xi

f(t,x)dxdt. (9.2)

In (9.2) approximate
� xi+1

xi
α(tn,x)dx by hαn

i ,
� tn+1

tn
v(t,xi)α(t,xi)dt by δv(tn,xi)α(tn,xi),

and
� tn+1

tn

� xi+1
xi

f(t,x)dxdt by hδf(tn,xi) to obtain

h
(
αn+1

i −αn
i

)
+ δ(v(tn,xi+1)α(tn,xi+1)−v(tn,xi)α(tn,xi)) = hδf(tn,xi).

In upwind method, the boundary flux term v(tn,xi)α(tn,xi) is approximated as

v(tn,xi)α(tn,xi)≈ v(tn,xi)+αn
i−1−v(tn,xi)−αn

i ,

where v(tn,xi)+ and v(tn,xi)− are positive and negative parts of v(tn,xi). In this ap-
proximation, it is assumed that the finite volume solution αh,δ is piecewise constant with
αh,δ|(tn,tn+1)×(xi,xi+1) = αn

i . The resulting finite volume scheme (upwind) has linear order
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of convergence. This can be improved by relaxing and replacing the piecewise constant
approximation by a piecewise linear approximation. The piecewise linear approximation
on (xi,xi+1) is constructed as, for every (t,x) ∈ [tn, tn+1)× (xi,xi+1)

α̃h,δ(tn,x) := pn
i

(
x− xi +xi+1

2

)
+αn

i , (9.3)

where pn
i is the slop is to be determined so that scheme remains stable. Then, the boundary

flux term is approximated with upwinding as

v(tn,xi)α(tn,xi)≈ v(tn,xi)+
(
pn

i−1(h/2)+αn
i−1
)
−v(tn,xi)− (−pn

i (h/2)+αn
i ) .

The slope pn
i is defined by

pn
i := minmod

(
αn

i+1−αn
i

h
,
αn

i −αn
i−1

h

)
, (9.4)

where, for every a,b ∈ R

minmod(a,b) :=
{

sgn(a)min(|a|, |b|) if ab≥ 0,
0 otherwise .

The slope can be defined in different ways as well. Definition (9.4) is employed as it
ensures discrete stability with minimal numerical diffusion. The final scheme is as follows:
find {αn

i : 1≤ i≤ I,0< n≤N} such that

scheme: αn+1
i = αn

i −
h

δ
(fn

i+1−fn
i )+ δf(tn,xi),

flux: fn
i := v(tn,xi)+

(
pn

i−1(h/2)+αn
i−1
)
−v(tn,xi)− (−pn

i (h/2)+αn
i ) , and

slope: pn
i = minmod

(
αn

i+1−αn
i

h
,
αn

i −αn
i−1

h

)
.

The initial condition is discretised as α0
i = 1

h

� xi+1
xi

α0(x)dx. The piecewise linear solution
α̃h,δ : (0,T )× (a,b)→ R is reconstructed from the discrete data {αn

i : 1≤ i≤ I,0< n≤N}
using (9.3).

A.2 BV estimate for 3D conservation laws

The terms Fϑ
i−1/2,j,m in (6.47b), where ϑ ∈ {x,y,z} can be written as, for s ∈ {−1,1}

Fx
i+s/2,j,m = Mx

i+s/2,j,m

[
(1− s)

2
(
αn

i−1,j,m−αn
i,j,m

)
+ (1+ s)

2
(
αn

i,j,m−αn
i+1,j,m

)]
+un

i+s/2,j,mf(αn
i,j,m), (9.5)
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Fy
i,j+s/2,m = My

i,j+s/2,m

[
(1− s)

2
(
αn

i,j−1,m−αn
i,j,m

)
+ (1+ s)

2
(
αn

i,j,m−αn
i,j+1,m

)]
(9.6)

+vn
i,j+s/2,mf(αn

i,j,m),

Fz
i,j,m+s/2 = Mz

i,j,m+s/2

[
(1− s)

2
(
αn

i,j,m−1−αn
i,j,m

)
+ (1+ s)

2
(
αn

i,j,m−αn
i,j,m+1

)]
(9.7)

+wn
i,j,m+s/2f(αn

i,j,m),

where

Mx
i−1/2,j,m :=

[
un+

i−1/2,j,m Di,j,m(αn
i−1,j,m,α

n
i,j,m)+un−

i−1/2,j,m Di,j,m(αn
i,j,m,α

n
i−1,j,m)

]
,

My
i,j−1/2,m :=

[
vn+

i,j−1/2,m Di,j,m(αn
i,j−1,m,α

n
i,j,m)+vn−

i,j−1/2,m Di,j,m(αn
i,j,m,α

n
i,j−1,m)

]
,

Mz
i,j,m−1/2 :=

[
wn+

i,j,m−1/2 Di,j,m(αn
i,j,m−1,α

n
i,j,m)+wn−

i,j,m−1/2 Di,j,m(αn
i,j,m,α

n
i,j,m−1)

]
,

and the difference quotient Di,j : R2→ R is defined by

Di,j,m(a,b) =


g(a,b)−f(αn

i,j,m)
a− b

if a ̸= b, and
0 if a= b.

Observe that Di,j,m(γ1,γ2) and Di,j,m(γ2,γ1), where

(γ1,γ2) ∈ {(αn
i−1,j,m,α

n
i,j,m),(αn

i,j−1,m,α
n
i,j,m),(αn

i,j,m−1,α
n
i,j,m)},

and hence Mx
i−1/2,j,m,M

y
i,j−1/2,m,M

z
i,j,m−1/2, are nonnegative due to the monotonicity of g

and g(αn
i,j,m,α

n
i,j,m) = f(αn

i,j,m). Use (9.5)–(9.7) to transform the right side of (6.47a) into
a convex linear combination of the terms αn

p,q,r, where (p,q,r) ∈ {(i, j,m),(i− 1, j,m),(i+
1, j,m),(i, j−1,m),(i, j+1,m),(i, j,m−1),(i, j,m+1)} described by

αn+1
i,j,m = αn

i,j,m(1−µiMx
i+1/2,j,m−λjMy

i,j+1/2,m−νmMz
i,j,m+1/2−µiMx

i−1/2,j,m

− λjMy
i,j−1/2,m−νmMz

i,j,m−1/2
)

+µiα
n
i+1,j,mMx

i+1/2,j,m +λjα
n
i,j+1,mMy

i,j+1/2,m +νmα
n
i,j,m+1Mz

i,j,m+1/2

+µiα
n
i−1,j,mMx

i−1/2,j,m +λjα
n
i,j−1,mMy

i,j−1/2,m +νmα
n
i,j,m−1Mz

i,j,m−1/2

−f(αi,j,m)

� tn+1

tn

 
Ki,j,m

div(uuu)(t,xxx)dtdxxx

 . (9.8)

A crucial estimate that is used many times in this section is obtained from the Lips-
chitz continuity of the function g, which is |Mx

i−1/2,j,m| ≤ Lip(g)|un
i−1/2,j,m|, |M

y
i,j−1/2,m| ≤

Lip(g)|vn
i,j−1/2,m|, and |Mz

i,j,m−1/2| ≤ Lip(g)|wn
i,j,m−1/2| for i = 0, . . . , I, j = 0, . . . ,J , and

m= 0, . . . ,L.

195



Proposition 9.1 (boundedness). The function αh,δ satisfies, for every 0≤ t≤ T ,∣∣∣αh,δ(t, ·)
∣∣∣
L∞(Ω)

≤ Bf,uuu

(
a0 +f0∥div(uuu)∥L1

t L∞(ΩT )
)
,

where Bf,uuu := exp
(
Lip(f)∥div(uuu)∥L1

t L∞(ΩT )
)
, a0 = ∥α0∥L∞(Ω), and f0 = f(0).

The proof of Proposition 9.1 is based on writing αn+1
i,j,m as convex linear combination

of values of αh,δ at the previous time step as in (9.8). The steps are similar to the proof of
Proposition 6.6 and hence the details are skipped.

Proposition 9.2 (spatial variation). The function αh,δ satisfies, for every 0≤ t≤ T ,

|αh,δ(t, ·)|BVx,y,z ≤ Buuu

(
|α0|BVx,y,z +C |div(uuu)|L1

t BVx,y,z

)
, (9.9)

where Buuu := exp
(
C ∥∇uuu∥

L1
t L∞(Ω̂T )

)
and C has the same dependencies as in Theorem 6.48.

Proof. Step 1: Consider the difference between the scheme (6.47a) written for αn+1
i,j,m and

αn+1
i−1,j,m

αn+1
i,j,m−α

n+1
i−1,j,m = αn

i,j,m−αn
i−1,j,m

−
[
µi(Fx

i+1/2,j,m−Fx
i−1/2,j,m)−µi−1(Fx

i−1/2,j,m−Fx
i−3/2,j,m)

]
−
[
λj(Fy

i,j+1/2,m−Fy
i,j−1/2,m)−λj(Fy

i−1,j+1/2,m−Fy
i−1,j−1/2,m)

]
−
[
νm(Fz

i,j,m+1/2−Fz
i,j,m−1/2)−νm(Fz

i−1,j,m+1/2−Fz
i−1,j,m−1/2)

]
=: αn

i,j,m−αn
i−1,j,m−Hx

i,j,m−Hy
i,j,m−Hz

i,j,m. (9.10)

Use (9.5) to write

Hx
i,j,m = µiMx

i−1/2,j,m

(
αn

i,j,m−αn
i−1,j,m

)
+µiMx

i+1/2,j,m

(
αn

i,j,m−αn
i+1,j,m

)
+µi−1Mx

i−1/2,j,m

(
αn

i,j,m−αn
i−1,j,m

)
+µi−1Mx

i−3/2,j,m

(
αn

i−2,j,m−αn
i−1,j,m

)
+Kf

i,j,m,

where

Kf
i,j,m := f(αn

i,j,m)
� tn+1

tn

 
Ki,j,m

∂xu(t,xxx)dxxxdt−f(αn
i−1,j,m)

� tn+1

tn

 
Ki−1,j,m

∂xu(t,xxx)dxxxdt.

Step 2: Consider the term Hy
i,j,m. Transform the differences along y – direction into x –

direction as in Step 2 of Proposition 6.7, and use the definition of E± to write

Hy
i,j,m = λjv

n+
i−1,j+1/2,mE+(αn

i,j,m,α
n
i−1,j,m,α

n
i,j+1,m)

(
αn

i,j,m−αn
i−1,j,m

)
−λjv

n+
i−1,j−1/2,mE+(αn

i,j−1,m,α
n
i−1,j−1,m,α

n
i,j,m)

(
αn

i,j−1,m−αn
i−1,j−1,m

)
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+λjv
n+
i−1,j+1/2,mE−(αn

i,j+1,m,α
n
i−1,j+1,m,α

n
i−1,j,m)

(
αn

i,j+1,m−αn
i−1,j+1,m

)
−λjv

n⋆
i−1,j−1/2E−(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j−1,m)

(
αn

i,j,m−αn
i−1,j,m

)
−λjv

n−
i−1,j+1/2,mE−(αn

i,j,m,α
n
i−1,j,m,α

n
i,j+1,m)

(
αn

i,j,m−αn
i−1,j,m

)
+λjv

n−
i−1,j−1/2,mE−(αn

i,j−1,m,α
n
i−1,j−1,m,α

n
i,j,m)

(
αn

i,j−1,m−αn
i−1,j−1,m

)

−λjv
n−
i−1,j+1/2,mE+(αn

i,j+1,m,α
n
i−1,j+1,m,α

n
i−1,j,m)

(
αn

i,j+1,m−αn
i−1,j+1,m

)
+λjv

n−
i−1,j−1/2,mE+(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j−1,m)

(
αn

i,j,m−αn
i−1,j,m

)
+λj(vn−

i,j+1/2,m−v
n−
i−1,j+1/2,m)(g+

i,j+1/2,m−g
−
i,j+1/2,m)

−λj(vn−
i,j−1/2,m−v

n−
i−1,j−1/2,m)(g+

i,j−1/2,m−g
−
i,j−1/2,m)+Kg,y

i,j,m, (9.11)

where

Kg,y
i,j,m :=

g+
i,j+1/2,m

hj

� tn+1

tn

 zm+1/2

zm−1/2

( xi+1/2

xi−1/2

v(t,s,yj+1/2, r)ds−
 xi−1/2

xi−3/2

v(t,s,yj+1/2, r)ds

)
drdt

−
g+

i,j−1/2,m

hj

� tn+1

tn

 zm+1/2

zm−1/2

( xi+1/2

xi−1/2

v(t,s,yj−1/2, r)ds−
 xi−1/2

xi−3/2

v(t,s,yj−1/2, r)ds

)
drdt.

By applying the same operations used to write (9.11), we can transform Hz
i,j,m. To obtain

the resultant expression for Hz
i,j,m apply the swap operations in (9.12) to the terms in the

right hand side of (9.11): with ∗ ∈ {+,−}

in Hy
i,j,m



αn
i+p,j+q,m+r ↔ αn

i+p,j+r,m+q

vn∗
i+p,j+r,m+q ↔ wn∗

i+p,j+q,m+r

g∗
i+p,j+r,m+q ↔ g∗

i+p,j+q,m+r� zm+1/2

zm−1/2

v(t,s,yj+q, r)dr ↔
� yj+1/2

yj−1/2

w(t,s,r,zm+q)dr

Kg,y
i,j,m ↔ Kg,z

i,j,m


in Hz

i,j,m (9.12)

Step 3: Combine (9.10)–(9.11) to write

αn+1
i,j,m−α

n+1
i−1,j,m =

(
αn

i,j,m−αn
i−1,j,m

)
(1− ci,j,m)

−µiMx
i+1/2,j,m

(
αn

i,j,m−αn
i+1,j,m

)
−µi−1Mx

i−3/2,j,m

(
αn

i−2,j,m−αn
i−1,j,m

)
+λjv

n+
i−1,j−1/2,mE+(αn

i,j−1,m,α
n
i−1,j−1,m,α

n
i,j,m)

(
αn

i,j−1,m−αn
i−1,j−1,m

)
−λjv

n+
i−1,j+1/2,mE−(αn

i,j+1,m,α
n
i−1,j+1,m,α

n
i−1,j,m)

(
αn

i,j+1,m−αn
i−1,j+1,m

)
−λjv

n−
i−1,j−1/2,mE−(αn

i,j−1,m,α
n
i−1,j−1,m,α

n
i,j)

(
αn

i,j−1,m−αn
i−1,j−1,m

)
+λjv

n−
i−1,j+1/2,mE+(αn

i,j+1,m,α
n
i−1,j+1,m,α

n
i−1,j,m)

(
αn

i,j+1,m−αn
i−1,j+1,m

)
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+νmv
n+
i−1,j,m−1/2E+(αn

i,j,m−1,α
n
i−1,j,m−1,α

n
i,j,m)

(
αn

i,j,m−1−αn
i−1,j,m−1

)
−νmv

n+
i−1,j,m+1/2E−(αn

i,j,m+1,α
n
i−1,j,m+1,α

n
i−1,j,m)

(
αn

i,j,m+1−αn
i−1,j,m+1

)
−νmv

n−
i−1,j,m−1/2E−(αn

i,j,m−1,α
n
i−1,j,m−1,α

n
i,j,m)

(
αn

i,j,m−1−αn
i−1,j,m−1

)
+νmv

n−
i−1,j,m+1/2E+(αn

i,j,m+1,α
n
i−1,j,m+1,α

n
i−1,j,m)

(
αn

i,j,m+1−αn
i−1,j,m+1

)
−λj(vn−

i,j+1/2,m−v
n−
i−1,j+1/2,m)

(
g+

i,j+1/2,m−g
−
i,j+1/2,m

)
+λj(vn−

i,j−1/2,m−v
n−
i−1,j−1/2,m)

(
g+

i,j−1/2,m−g
−
i,j−1/2,m

)
−νm(vn−

i,j,m+1/2−v
n−
i−1,j,m+1/2)

(
g+

i,j,m+1/2−g
−
i,j,m+1/2

)
+νm(vn−

i,j,m−1/2−v
n−
i−1,j,m−1/2)

(
g+

i,j,m−1/2−g
−
i,j,m−1/2

)
−
(
Kf

i,j,m +Kg,y
i,j,m ++Kg,z

i,j,m

)
,

(9.13)

where

ci,j,m := µiMx
i−1/2,j,m +µi−1Mx

i−1/2,j,m +λjv
n+
i−1,j+1/2,mE+(αn

i,j,m,α
n
i−1,j,m,α

n
i,j+1,m)

−λjv
n+
i−1,j−1/2,mE−(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j−1,m)−λjv

n−
i−1,j+1/2,mE−(αn

i,j,m,α
n
i−1,j,m,α

n
i,j+1,m)

+λjv
n−
i−1,j−1/2,mE+(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j−1,m)+νmv

n+
i−1,j,m+1/2E+(αn

i,j,m,α
n
i−1,j,m,α

n
i,j,m+1)

−νmv
n+
i−1,j,m−1/2E−(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j,m−1)−νmv

n−
i−1,j,m+1/2E−(αn

i,j,m,α
n
i−1,j,m,α

n
i,j,m+1)

+νmv
n−
i−1,j,m−1/2E+(αn

i,j,m,α
n
i−1,j,m,α

n
i−1,j,m−1).

The CFL condition (6.48a) implies that 1− ci,j,m is nonnegative. Take absolute value on
both sides of (9.13), multiply by hjlm , sum over i= 1, . . . , I, j = 0, . . . ,J , and m= 0, . . . ,L,
use the condition that uuu= 0 on ∂Ω̂, and follow the same indicial transformations employed
to arrive at (6.22) in Step 3 of the proof of Proposition 6.7 to obtain

L∑
m=0

lm
J∑

j=0
hj

I∑
i=1

∣∣∣αn+1
i,j,m−α

n+1
i−1,j,m

∣∣∣≤ L∑
m=0

lm
J∑

j=0
hj

I∑
i=1

∣∣∣αn
i,j,m−αn

i−1,j,m

∣∣∣
+

L∑
m=0

lm
J−1∑
j=0

hj

I∑
i=1

λj

∣∣∣vn−
i,j+1/2,m−v

n−
i−1,j+1/2,m

∣∣∣ ∣∣∣g(αn
i,j,m,α

n
i,j+1,m)−g(αn

i,j+1,m,α
n
i,j,m)

∣∣∣
+

L∑
m=0

lm
J∑

j=1
hj

I∑
i=1

λj

∣∣∣vn−
i,j−1/2,m−v

n−
i−1,j−1/2,m

∣∣∣ ∣∣∣g(αn
i,j−1,m,α

n
i,j,m)−g(αn

i,j,m,α
n
i,j−1,m)

∣∣∣
+

L−1∑
m=0

lm
J∑

j=0
hj

I∑
i=1

νm

∣∣∣wn−
i,j,m+1/2−w

n−
i−1,j,m+1/2

∣∣∣ ∣∣∣g(αn
i,j,m,α

n
i,j,m+1)−g(αn

i,j,m+1,α
n
i,j,m)

∣∣∣
+

L∑
m=1

lm
J∑

j=0
hj

I∑
i=1

νm

∣∣∣wn−
i,j,m−1/2−w

n−
i−1,j,m−1/2

∣∣∣ ∣∣∣g(αn
i,j,m−1,α

n
i,j,m)−g(αn

i,j,m,α
n
i,j,m−1)

∣∣∣
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+ δ
L∑

m=1
lm

J∑
j=1

hj

I∑
i=1

(∣∣∣Kf
i,j,m +Kg,y

i,j,m +Kg,z
i,j,m

∣∣∣) . (9.14)

The Lipschitz continuity of x→ x− and g, Lipschitz continuity of v and w in the x–direction,
and grid regularity condition in Definition 6.14 imply

λj

∣∣∣vn−
i,j−1/2,m−v

n−
i−1,j−1/2,m

∣∣∣ ∣∣∣g(αn
i,j−1,m,α

n
i,j,m)−g(αn

i,j,m,α
n
i,j−1,m)

∣∣∣≤
c̃|αn

i,j−1,m−αn
i,j,m|Lip(g)

� tn+1

tn

||∂xv(t, ·)||L∞(Ω) dt and

νm

∣∣∣wn−
i,j,m+1/2−w

n−
i−1,j,m+1/2

∣∣∣ ∣∣∣g(αn
i,j,m,α

n
i,j,m+1)−g(αn

i,j,m+1,α
n
i,j,m)

∣∣∣≤
c̃|αn

i,j,m−1−αn
i,j,m|Lip(g)

� tn+1

tn

||∂xw(t, ·)||L∞(Ω) dt.

Step 4: Write the term Kf
i,j,m as

Kf
i,j,m =

f(αn
i,j,m)

� tn+1

tn

 
Ki,j,m

div(uuu)(t, ·)dxxxdt−f(αn
i−1,j,m)

� tn+1

tn

 
Ki−1,j,m

div(uuu)(t, ·)dxxxdt



−

f(αn
i,j,m)

� tn+1

tn

 
Ki,j,m

∂yv(t, ·)dxxxdt−f(αn
i−1,j,m)

� tn+1

tn

 
Ki−1,j,m

∂yv(t, ·)dxxxdt



−

f(αn
i,j,m)

� tn+1

tn

 
Ki,j,m

∂zw(t, ·)dxxxdt−f(αn
i−1,j,m)

� tn+1

tn

 
Ki−1,j,m

∂zw(t, ·)dxxxdt



=: Kf,1
i,j,m +Kf,2

i,j,m +Kf,2
i,j,m.

Use the grouping identity (1.1a) to split the terms Kg,y
i,j,m and Kg,z

i,j,m as follows:

Kg,y
i,j,m =

g+
i,j+1/2,m−g

+
i,j−1/2,m

2hj

� tn+1

tn

 zm+1/2

zm−1/2

 xi+1/2

xi−1/2

v(t,s,yj+1/2, r)ds

−
 xi−1/2

xi−3/2

v(t,s,yj+1/2, r)ds

 drdt

+
� tn+1

tn

 zm+1/2

zm−1/2

 xi+1/2

xi−1/2

v(t,s,yj−1/2, r)ds−
 xi+1/2

xi−3/2

v(t,s,yj−1/2, r)ds

drdt


+
g+

i,j+1/2,m +g+
i,j−1/2,m

2

� tn+1

tn

 
Ki,j,m

∂yv(t, ·)dxxxdt−
� tn+1

tn

 
Ki−1,j,m

∂yv(t, ·)dxxxdt


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=: Kg,y,1
i,j,m +Kg,y,2

i,j,m and

Kg,z
i,j,m =

g+
i,j,m+1/2−g

+
i,j,m−1/2

2νm

� tn+1

tn

 yj+1/2

yj−1/2

 xi+1/2

xi−1/2

w(t,s,r,zm+1/2)ds

−
 xi−1/2

xi−3/2

w(t,s,r,zm+1/2)ds

 drdt

+
� tn+1

tn

 yj+1/2

yj−1/2

 xi+1/2

xi−1/2

w(t,s,r,zm−1/2)ds−
 xi+1/2

xi−3/2

v(t,s,r,zm−1/2)ds

drdt


+
g+

i,j,m+1/2 +g+
i,j,m−1/2

2

� tn+1

tn

 
Ki,j,m

∂zw(t, ·)dxxxdt−
� tn+1

tn

 
Ki−1,j,m

∂zw(t, ·)dxxxdt


=: Kg,z,1

i,j,m +Kg,z,2
i,j,m.

Apply analogous arguments used to bound Kf,1
i,j and Kg,1

i,j (see (6.25) and (6.26)) to obtain

|Kf,1
i,j,m| ≤ Lip(f)|αn

i,j,m−αn
i−1,j,m|

� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt

+(Lip(f)αM +f0)
� tn+1

tn

∣∣∣∣∣∣
 

Ki,j,m

div(uuu)(t, ·)dxxx−
 

Ki−1,j,m

div(uuu)(t, ·)dxxx

∣∣∣∣∣∣ dt.
|Kg,y,1

i,j,m| ≤ c̃Lip(g)
(
|αn

i,j,m−αn
i,j−1,m|+ |αn

i,j+1,m−αn
i,j,m|

)� tn+1

tn

||∂xv(t, ·)||L∞(Ω) dt.

|Kg,z,1
i,j,m| ≤ c̃Lip(g)

(
|αn

i,j,m−αn
i,j,m−1|+ |αn

i,j,m+1−αn
i,j,m|

)� tn+1

tn

||∂xw(t, ·)||L∞(Ω) dt.

Use combined estimates on Kg,y,2
i,j,m + Kf,2

i,j,m and Kg,z,2
i,j,m + Kf,3

i,j,m and similar arguments used
to bound |Kf,2

i,j +Kg,2
i,j | (see (6.29)) to arrive at

|Kf
i,j,m +Kg,y

i,j,m +Kg,z
i,j,m| ≤ |K

f,1
i,j,m|+ |K

g,y,1
i,j,m|+ |K

f,2
i,j,m +Kg,y,2

i,j,m|+ |K
g,z,1
i,j,m|+ |K

f,3
i,j,m +Kg,z,2

i,j,m|

≤ Lip(f)|αn
i,j,m−αn

i−1,j,m|
(� tn+1

tn

||div(uuu)(t, ·)||L∞(Ω) dt+2
� tn+1

tn

||∂yv(t, ·)||L∞(Ω) dt

+2
� tn+1

tn

||∂zw(t, ·)||L∞(Ω) dt

)

+Lip(g)
(
|αn

i,j−αn
i,j−1|+ |αn

i,j+1−αn
i,j |
)(

c̃

� tn+1

tn

(
||∂xv(t, ·)||L∞(Ω) +2||∂yv(t, ·)||L∞(Ω)

)
dt

)

+
[
Lip(g)

(
|αn

i,j,m−αn
i,j,m−1|+ |αn

i,j,m+1−αn
i,j,m|

)
×
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(
c̃

� tn+1

tn

(
||∂xw(t, ·)||L∞(Ω) +2||∂zw(t, ·)||L∞(Ω)

)
dt

)]

+ (Lip(f)αM +f0)
� tn+1

tn

∣∣∣∣∣
 

Ki,j,m

div(uuu)(t, ·)dxxx−
 

Ki−1,j,m

div(uuu)(t, ·)dxxx

∣∣∣∣∣ dt. (9.15)

Step 5: Use (9.14)–(9.15) to obtain

|αh,δ(tn+1, ·)|L1
zL1

yBVx
≤ |αh,δ(tn, ·)|L1

zL1
yBVx

+4(c̃+1) Lip(g)|αh,δ(tn, ·)|L1
zL1

xBVy

� tn+1

tn

||∇uuu||L∞(Ω) dt

+4(c̃+1) Lip(g)|αh,δ(tn, ·)|L1
yL1

xBVz

� tn+1

tn

||∇uuu||L∞(Ω) dt

+5Lip(f)|αh,δ(tn, ·)|L1
zL1

yBVx

� tn+1

tn

||∇uuu||L∞(Ω) dt

+(Lip(f)αM +f0)
� tn+1

tn

|Π̃0
h(div(uuu))(t, ·)|L1

yBVx
dt, (9.16)

where the piecewise constant projection Π̃0
h : BVxxx(Ω)→ BVxxx(Ω) for an admissible grid

Xk×Yh×Zl is defined by, for β ∈BVxxx(Ω),
(
Π̃0

h(β)
)

(xxx) :=
 

Ki,j,m

β dxxx ∀xxx ∈Ki,j,m.

Along with similar estimates on |αh,δ(tn+1, ·)|L1
zL1

xBVy
and |αh,δ(tn+1, ·)|L1

yL1
xBVz

(9.16)
yields

|αh,δ(tn+1, ·)|BVx,y,z ≤ |αh,δ(tn, ·)|BVx,y,z

(
1+C

� tn+1

tn

||∇uuu(t, ·)||L∞(Ω) dt
)

+C

� tn+1

tn

|Π̃0
h(div(uuu))|BVx,y dt, (9.17)

where C := max(Lip(f)αM +f0,5Lip(f)+4Lip(g)(c̃+1)+1). An application of induction
on (9.17) yields (9.9).

Proposition 9.3 (temporal variation for the three dimensional scheme). The function αh,δ

satisfies

|αh,δ|L1
x,y,zBVt

≤ Buuu

(
|α0|BVx,y,z +C |div(uuu)|L1

t BVx,y,z

)
Lip(g)||∇uuu||

L1
t L∞(Ω̂T )

+(Lip(f)αM +f0)|div(uuu)|
L1(Ω̂T ). (9.18)

The proof of Proposition 9.3 is similar to the proof of Proposition 6.8. A use of the
results (9.9) and (9.18) establishes Theorem 6.48.
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Appendix B
Biphasic model formulation in higher
spatial dimensions

A brief derivation of the model considered in Chapter 5 in provided in this appendix. The
principles involved in modelling tumour growth in two and three dimensions are similar to
that of the one-dimensional case in Chapter 1. However, the final system that describes
the evolution of cell velocity and pressure differs from the one-dimensional version. In one
dimension, it is possible to eliminate the pressure variable using velocity, see (1.17) and
thus reduce the number of unknown variables to three; cell volume fraction, cell velocity,
and nutrient concentration. In a higher-dimensional setting, the dimensionality constrains
forbids such a reduction. Instead, cell velocity and pressure are governed by a generalised
viscous Stokes system. The first version of the model considered in Chapter 5 is proposed
H M. Byrne et al. [61].

The tumour growth is studied over the finite duration (0,T ), T > 0. The tumour at
each fixed time t ∈ (0,T ) occupies the time–dependent domain Ω(t)⊂Rd, where d ∈ {2,3}.
The boundary of Ω(t) is denoted by Γ(t). We set the normal velocity of Γ(t) equal to the
normal component of the velocity of cells present at Γ(t) for every t ∈ (0,T ). That is,

uuuc(t,γ(t)) ·nnn|Γ(t) = ∂γγγ′(t)
∂t
·nnn|Γ(t),

where γγγ(t) is a local parametrization of Γ(t) and nnn|Γ(t) is the unit normal vector to Γ(t).
Here, uuuc is the velocity of the tumour cells.

Conservation laws
Mass conservation applied to cell and fluid phases yields the following hyperbolic conser-
vation laws

∂α

∂t
+div(uuucα) = qc and ∂α

∂t
+div(uuuwβ) = qw, (10.1)
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where uuuc and uuuw are cell and fluid velocity vector fields and qc =−qw is the net production
of tumour cells. In higher dimensional setting also, it is assumed that α+β = 1. The stress
tensors in cell and fluid phases are denoted by σσσc and σσσw, respectively. Corresponding
momentum source terms are denoted by FFF c and FFFw. Neglect inertial effects to obtain the
momentum conservation laws as follows

div(ασσσc) +FFF c = 0 and div(βσσσw)+FFFw = 0. (10.2)

The balance of forces gives FFF c = −FFFw. Let Id be the d–dimensional identity tensor, d ∈
{2,3}. The cell phase is assumed to be viscous, and the associated stress tensor is described
by

σσσc =−pcId +µc(∇uuuc +∇uuuT
c )+λcdiv(uuuc)Id, (10.3)

where pc is cell pressure, µc is shear viscosity coefficient, and λc is the bulk viscosity
coefficient. The shear and bulk viscosity coefficients are thermodynamically related by
λc =−2µc/3. The fluid phase is assumed to be inviscid, which yields,

σσσw =−pwId (10.4)

where pw is the fluid pressure. The nutrient follows the diffusion equation

∂c

∂t
−div(η∇c) =−Qc, (10.5)

where Qc = Q0cα/(1 +Q1c) is the nutrient consumption rate and η is the diffusivity con-
stant.

Constitutive assumptions

Recall that H (α) = γ(α−αR)+/(1−α)2 from Section 1.5. Add the two equations in (10.2)
to obtain div(ασσσc +βσσσw) = 0. Substitute (10.3) and (10.4) in div(ασσσc +βσσσw) = 0 and use
pc = pw +γH (α) and α+β = 1 to arrive at

div
(
−pwId +µc(∇uuuc +(∇uuuc)T )+λcdiv(uuuc)Id−αγH (α)Id

)
= 0. (10.6)

The momentum source terms are modelled as FFF c = pw∇α+ k1αβ(uuuw − uuuc) and FFFw =
pw∇β+k1αβ(uuuw−uuuc). Use FFFw and σσσw in (10.2) to obtain

−∇pw = k1α(uuuw−uuu).

Add the two equations in (10.1) to arrive at

div(αuuuc +βuuuw) = 0. (10.7)

The final model is described by (10.1)–(10.7).
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Initial and boundary conditions
Since (10.1) and (10.5) are evolution equations, initial conditions need to be specified:
α(0,xxx) = α0(xxx) and c(0,xxx) = c0(xxx) for every xxx ∈ Ω(0). On the boundary, the internal and
external nutrient concentration coincides, which yields c|Γ(t) = cout for every t > 0. Since
the fluid pressure is zero outside the tumour, pw|Γ(t) = 0 holds. The continuity of normal
stress across the tumour boundary and since stress is zero outside the tumour, it follows

(µc(∇uuuc +(∇uuuc)T )+λcdiv(uuuc)Id))n|Γ(t) = 000.

Nondimensionalisation and simplification
Rescale the variables as follows

xxx′ = 1
ℓ0
xxx, t= t′tdim, α

′ = α uuu′
c = tdim

ℓ0
uuuc, uuu

′
w = tdim

ℓ0
uuuw,

p′
w = pw

γ
, p′

c = pc

γ
, c′ = c

cout
, µ′

c = µc

(γ tdim)
, and λ′

c = λc

(γ tdim)
,

where ℓ0 is the circumradius of Ω(0) and tdim is (1 +S1cout)/S0cout. Variables with prime
symbols are dimensionless. Set div′ = ℓ0 div, ∇′ = ℓ0∇, and ∂

∂t′ = tdim
∂
∂t . The cell volume

fraction satisfies the following dimensionless equation

∂α

∂t′
+div′(uuu′

cα) = (1+ s1)c′

1+ s1c′
α(1−α)− s2 + s3c

′

(1+ s4c′)
α,

where s1, s2, s3, and s4 are defined by (1.5.3). Divide (10.6) by γ to obtain the dimensionless
version

div
(
−p′

wId +µ′
cα(∇′uuu′

c +(∇′uuu′
c)T )+λ′

cαdiv′(uuu′
c)I−αH (α)Id

)
= 000. (10.8)

Combine the dimensionless equations −∇′p′
w = kα(uuu′

w− uuu′
c) and div′(αuuu′

c + βuuu′
w) = 0 to

arrive at

div
(1−α
kα
∇′p′

w

)
+div(uuu′

c) = 0. (10.9)

The relations (10.8) and (10.9) eliminate uuuw and pc from the combined system. The
dimensionless version of (10.5) is

∂c′

∂t′
−div′(η∇′c′) =− Qc′α

1+ Q̂1c′
,

where η = η tdim/ℓ
2
0. The prime symbols are dropped for notational simplicity. Since uuuw

and pc are eliminated from the final system, the subscripts used to differentiate cell and
fluid phases can also be dropped. The final dimensionless system is as follows:

∂α

∂t
+div(uuuα) = αf(α,c),
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div
(
−pId +µα(∇uuu+(∇uuu)T )+λαdiv(uuu)Id−αH (α)Id

)
= 0,

−div
(1−α
kα
∇p

)
+div(uuu) = 0, and

∂c

∂t
−div(η∇c) =− Qcα

1+ Q̂1c
.

The initial conditions are

α(0,xxx) = α0(xxx), c(0,xxx) = c0(xxx) ∀xxx ∈ Ω(0),

and boundary conditions are, ∀t ∈ (0,T )

p|Γ(t) = 0, (µ(∇uuu+(∇uuu)T )+λcdiv(uuu)Id−αH (α)Id)nnn|Γ(t) = 000, and c|Γ(t) = 1.
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