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.

ABSTRACT

Among numerous volatility estimation schemes from historically available data, a class

of discretization methods namely, Generalized Auto Regressive Conditional Heteroskedas-

ticity process (GARCH) are of extreme importance because of the simplicity as well as

robustness they posses. Therefore, it is important to understand how this discretized

scheme behave in a continuously extended fashion. A recent upsurge in the publications

from this area of quantitative finance corroborates the above a argument. Though sev-

eral continuous time extensions have been proposed for GARCH process under varying

assumptions and parameterizations, one which seems to be more natural is the delay

integro differential formalism. Though deterministic and stochastic integro differential

equations are well studied, little has been surveyed on stochastic delay integro differential

equations (SDIDE). The main objective of this thesis is to establish important properties

of stochastic delay integro differential equations. We have attempted to prove an analo-

gous existence and uniqueness theorem of solutions for stochastic delay integro differential

equations. Other important properties of the solutions like Lp boundedness and stability

is also studied. Since it is nearly impossible to solve such equations analytically we tried

to give approximate numerical solutions of a class of equations using the well celebrated

Euler - Maruyama scheme and established an error bound for the solutions. Using the

above tools, we tried to solve a particular SDIDE in mathematical finance which models

the volatility, where we conclude this project.
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General Notation

positive : > 0.

non positive : ≤ 0.

negative : < 0.

non negative : ≥ 0.

a.s : almost surely.

a.e : almost everywhere.

IA : Indicator function (or characteristic function) of a set A.

R : Set of all real numbers.

Rd : {(x1, x2, . . . , xd)|xi ∈ R ∀ 1 ≤ i ≤ d}, d- dimensional real space.

R+ : set of all non negative real numbers.

Rd×m : set of all d×m real matrices.

P : Probability measure.

E : Expectation.

||f ||2a,b : E

 b∫
a

|f(t)|2 dt

 .

M 2 ([a, b] : R) :
{
f = {ft}a≤t≤b : ||f ||2a,b <∞

}
.

||φ|| : sup
t∈Dom(φ)

|φ(t)|.

|x| :
√
xT · x.

{εn}n≥0 : Sequence of independent and identically distributed N(0,1) random variables.

sdde : Stochastic delay differential equations.

sdide : Stochastic delay integro differential equations.
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MOTIVATION AND OBJECTIVES

Efficiency of market is an important hypothesis presumed often by researchers working

in mathematical finance. It implies that market is perfectly competitive and information

is accessible to everyone in no time and their response is also instantaneous. But from

a pragmatic point of view this assumption is having little validity. In practice, a cer-

tain amount of time is required for the information to reach out to all stakeholders and

responses to be decided by them. This simple but important observation captivated

researchers across the world to incorporate a new parameter of time delay into the math-

ematical models under respective concern [23],[17]. But market inefficiency is not the

only seminal reason for delay appearing in economic models. Memory involved in fi-

nancial variables is also an equally pertinent reason. Conditional heteroskedastic models

are actually based on this assumption that the future events occuring in financial mar-

ket is a function of the past history. For instance consider the classical GARCH (1,1)

(Generalized Auto Regressive Conditional Heteroskedasticty) scheme, in which, hn = εnσn

σ2
n = α0 + α1h

2
n−1 + β1σ

2
n−1.

(1)

where {εn}n≥0 is a sequence of identically distributed independent (i.i.d) normal random

variables with zero mean and unit variance. Inspired by the usefulness of this model and

similarity it has with discretization of a differential equation people started to explore

about the continuous time analogues of GARCH(1,1) scheme. As a result a large number

of articles have been published in that direction ([5],[1],[7],[3],[6]). Yuriy Kazmerchuk

et.al[15]. obtained a seemingly realistic result in this regard. He came by a non linear

stochstic integro differential equation as a canonical limit of discrete GARCH process,

which models of uncertainty in financial market. The aforementioned model is of the

form,

dσ2(t, St)

dt
= γV +

α

τ

 t∫
t−τ

σ(s, Ss) dB(s)

2

− (α + γ)σ2(t, St). (2)

where σ(t, St) is te volatility and St = {S(t + θ) : −τ ≤ θ ≤ 0}. The above equation

is driven by the squared Itô integral term,
t∫

t−τ
σ(s, Ss) dB(s). Not only that, the function

1



itself σ2(t, St) appear non linearly inside the stochastic integral.

One natural question we can pose is whether the equation (5.1) admits a solution

or not. Clearly this equation can not be solved analytically. We have to use numerical

methods to solve this equation to get approximate solutions. This gave us the initial

impetus to study the properties of stochastic integro differential equations. As we pro-

ceeded, we found that the a large number of physical phenomena can be modeled using

such equations, for instance population dyanamics, genetics and mathematical finance

[12],[21].

Stochastic integro differential equations with deterministic delay integral terms was

already surveyed in detail, for instance see [14],[24] and [13]. General theory of stochastic

integro differential equations with deterministic and stochastic integral terms independent

of delay is also a well studied subject [19],[20]. But the integro-differential equation

we posses does not fit into the above models because of the intrinsic properties of the

equation itself. It is explicitly driven by deterministic time variation (dt), and implicitly

by a stochastic delay integral term. This motivated us to consider a new generic model

of the form,

dy(t) = F (t, y(t), Iy(t), Jy(t)) dt+G (t, y(t), Iy(t), Jy(t)) dB(t), t ∈ [τ, T ], (3)

where Iy(t) =
t∫

t−τ
f(s, y(s)) ds and Jy(t) =

t∫
t−τ

g(s, y(s)) dB(s). Here the positive con-

stant τ is the delay in time. It is easy to check that equation (5.1) naturally come

as a special case of the equation (3.1). We pose the following questions regarding the

analytical and numerical properties of this equation,

1. Does the equation (3.1) has a solution and is it unique?

2. Is the solution bounded (in suitable norm) and is it stable ?

3. Can we numerically solve equation (3.1), and how does the error propagates as we

time march ?

4. Are we able to solve the volatility equation in finance (5.1), using the tools we have

developed ?

This thesis is a humble attempt to answer the above key questions. Despite the

hardness and challenging nature of these problems, it highly inspiring and motivating to

2



explore them, since the expansion of the field of quantitative finance is so vigorous and

fast, making even the slightest achievements worthy enough to create great influence. We

end this chapter by clearly specifying the objectives of this project.

Objectives

1) To establish a general model for stochastic delay integro-differential equations and

study the following aspects.

(i) Existence and uniqueness of solutions.

(ii) Boundedness of solutions.

(iii) Stability of solutions.

2. Derive a numerical method by which approximate solutions to a subclass of SDIDE

can be obtained with sufficient accuracey.

(i) Establish an error bound for the approximate solutions.

(ii) Illustration by test equations.

3) Try to apply the tools developed to solve equation (5.1) which models volatility.

baaac
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Chapter 1

Basic Stochastic Processes

1.1 Brownian Motion

Definition 1.1.1 (Brownian motion). Let (Ω,P,F) be a probability space with a

filtration {Ft}t≥0. A one dimensional Brownian motion is a real valued continuous {Ft}
adapted process {Bt}t≥0 with the following properties,

1) B0 = 0,

2) for 0 ≤ s < t <∞, the increment Bt − Bs, is normally distributed with zero mean

and variance t− s.

3) for 0 ≤ s < t <∞, the increment Bt −Bs is independent of Fs.

1.1.1 Existence of Brownian Motion

Lemma 1.1.2. Let B(t) be a one dimensional Brownian motion. Then

E(B(t) ·B(s)) = min(t, s) (1.1)

for any t, s ∈ R+

4



Proof. Assuming t > s,

E(B(t) ·B(s)) = E((B(t)−B(s) +B(s)) ·B(s)).

= E((B(t)−B(s)) ·B(s)) + E((B(s))2).

= E(B(t)−B(s)) · E(B(s)) + s.

= s = min(t, s).

The third equality followed from the fact that B(t)− B(s) and B(s) are independent of

each other and B(t) − B(s) ∼ N(0, t − s), B(s) ∼ N(0, s). The other case where s > t

follows similarly.

The existence of Brownian motion can be done in many ways. Here we give a com-

paratively simple method proved by Lévy and Ciesieslki [16].

Definition 1.1.3 (Haar functions). The family {hk}k≥1 of Haar functions are defined

for 0 ≤ t ≤ 1 as follows,

h0(t) := 1 ∀ 0 ≤ t ≤ 1 (1.2)

h1(t) :=


1, ∀ 0 ≤ t ≤ 1

2

−1, ∀ 1

2
< t ≤ 1.

(1.3)

If 2n < k < 2n+1 for n = 1, 2, . . . we define,

hk(t) :=


2n/2,

k − 2n

2n
≤ t ≤ k − 2n + 1/2

2n

−2n/2,
k − 2n + 1/2

2n
< t ≤ k − 2n + 1

2n

0. otherwise.

(1.4)

It can be proved that Haar functions {hk}∞k=0 forms a complete orthonormal basis of

L2(0, 1). We define the kth Schauder function as,

sk(t) :=

∫ t

0

hk(s)ds. (1.5)

Theorem 1.1.4. Let {Ak}k≥0 be a sequence of N(0,1) random variables defined on the

5



same probability space. Then the sum,

W (t, ω) :=
∞∑
k=0

Ak(ω)Sk(t) 0 ≤ t ≤ 1 (1.6)

converges uniformly for all t, for a.e Ω. Further more,

1. W(·) is a Brownian motion for 0 ≤ t ≤ 1,

2. for a.e ω, the sample path t→ W (ω, t) is continuous.

Please refer Introductory Stochastic Differential Equations by L.C. Evans [9] for the

proof.

Theorem 1.1.5 (Existence of Browninan motion). Let (Ω,F,P) be probability space

on which countably many N(0, 1) i.i.d random variables {Ak}∞k are defined. Then there

exists a Brownian motion for all ω ∈ Ω and t ∈ R+.

Proof of this theorem is given in A simple contruction of certain diffusion processes,

by John Lamperti [16]. Please refer the above mentioned article for details.

Definition 1.1.6 (d-dimensional Brownian motion). An Rd valued stochastic pro-

cess B(·) = (B1(·), B2(·), . . . , Bd(·)) is called a d-dimensional Brownian motion if,

1) For each k = 1, 2, . . . , d, Bk(·) is a one dimensional Brownian motion,

2) The σ algebras, Bk := σ(Bk(t), t ≥ 0) are independent for k = 1, 2, . . . , d.

1.2 Properties of Brownian Motion

The time realization for a fixed ω ∈ Ω is called a path of a Brownian motion, {B(t)}. Re-

garding paths Brownian motion has two important properties; it is everywhere continuous

but nowhere differentiable.

Definition 1.2.1 (Uniformly Hölder continuous function). Let 0 < γ ≤ 1. A

function, f : [0, T ] → R is called uniformly Hölder continuous with exponent γ > 0 if

there exists a positive constant Cγ such that for every s, t ∈ [0, T ],

|f(s)− f(t)| ≤ Cγ|t− s|γ. (1.7)

6



Theorem 1.2.2 (Kolmogorov). Let S(.) be a stochastic process with continuous sample

paths a.s, such that

E(|X(t)−X(s)|β) ≤ C|t− s|1+α (1.8)

for constants α, β, C > 0, and for 0 ≤ s, t ≤ T . Then for each 0 < γ <
α

β
, T > 0 and

almost ω, there exists a constant K = K(ω, γ, T ) such that

|X(t, ω)−X(s, ω)| ≤ K|t− s|γ (1.9)

for every 0 ≤ s, t ≤ T . That is X(t, ω) is uniformly Hölder continuous for exponents

0 < γ <
α

β
.

Proposition 1.2.3. If B(·) is an n-dimensional Brownian motion then, it is uniformly

Hölder continuous for all exponents 0 < γ <
1

2
.

Proof. We have for m = 1, 2 . . . , and r = |t− s|

E(|B(t)−B(s)|2m) =
1

(2πr)n/2

∫
Rn

|x|2m exp
−|x|2

2r
dx.

=
1

(2πr)n/2
rm
∫
Rn

|y|2m exp
−|x|2

2
dy.

≤ Crm = C|t− s|m.

Therefore the hypothesis of the theorem 1.2.2 hold with the constants β = 2m and

α = m− 1. Thus we have B(·) is uniformly Hölder continuous for all exponents, 0 < γ <
α

β
=

1

2
− 1

2m
. This holds for all m. Thus we have, 0 < γ <

1

2
.

We conclude this chapter by stating the results regarding the nowhere differentiability

of Brownian motion and it’s quadratic variation.

Theorem 1.2.4. 1) For each
1

2
< γ < 1 and almost every ω, B(t, ω) is nowhere

Hölder continuous with exponent γ.

2) In particular the sample paths, t→ B(t, ω) is nowhere differentiable for a.e ω ∈ Ω.

Please refer Dvortesky, Erdös and Kakutani [8] for a well drafted proof.

7



Definition 1.2.5. The quadratic variation of Brownian motion is defined [B,B](t) is

defined as

[B,B](t) := lim
n∑
i=1

|B(tni )−B(tni−1)|2

where the limit is taken over all shrinking partitions of [0,t] with δn = maxi |ti+1− ti| → 0

as n→ 0.

Theorem 1.2.6. Quadratic variation of a Brownian motion over [0,t] is t, but is of

infinite variation in any interval [0,t] however small it is.

1.3 Martingales

Definition 1.3.1. A stochastic process is called a martingale {Mt} with respect to the

filtration {Ft} and the probability measure P if,

1. E(|Mt|) <∞,

2. Mt is Ft measurable for each t,

3. E(Mt|Fs) = Ms a.s, if s < t.

We list few important examples of martingales.

i) If B(t) is a Brownian motion then B(t), B(t) − t, exp

(
uB(t)− tu

2

2

)
are martin-

gales.

ii) For any integrable random variable X, E[X|Ft] is a martingale.

iii) For any Poisson process N(t) with intensity λ, N(t) − λ (called the compensated

Poisson process), (N(t)− λt)2 − λt and exp ((log(1− u)N(t) + uλt) for 0 < u < 1

are martingales.

In the definition 1.3.1, if E(Mt|Fs) ≤Ms then the martingale is called a sub martingale

and if the inequality is reversed is called a super martingale. We can easily show that a

super martingale M(t) on 0 ≤ t ≤ T is a martingale if and only if E(M(T )) = E(M(0)).

We state the following properties of martingales without proof,

8



Theorem 1.3.2 (Doob - Lévy martingale and uniform integrability). Let Y be a

square integrable random variable then M(t) = E[Y |Ft] is a uniformly integrable martin-

gale. M(t) is called Doob - Lévy martingale.

Corollary 1.3.3. Any martingale M(t) on a finite time interval 0 ≤ t ≤ T < ∞ is

uniformly integrable and is closed by M(T ).

Theorem 1.3.4 (Martingale convergence theorem). If M(t), 0 ≤ t <∞ is a square

integrable martingale, then there exists an almost sure limit limt→∞M(t) = Y , and Y is

an integrable random variable.

Theorem 1.3.5 (Doob). Let {Xn} be a martingale, limn→∞E|Xn| <∞, then limXn =

X almost surely.

Theorem 1.3.6 (Doob’s martingale inequalities). 1. If {Xn} is a square sub mar-

tingale indexed by the finite set (0, 1, . . . , N), then for every λ > 0,

λP
[
sup
n
Xn ≥ λ

]
≤ E[XNI{supnXn≥λ}] ≤ E[|XN |I{supnXn≥λ}] (1.10)

2. If X is a martingale or a positive sub martingale indexed by the finite set (0, 1, . . . , N),

then for every p ≥ 1 and λ > 0,

λp × P
[
sup
n
Xn ≥ λ

]
≤ E[|XN |p] (1.11)

and for p > 1,

E[|XN |p] ≤ E[sup
n
|Xn|p] ≤

(
p

p− 1

)
E[|XN |p] (1.12)

baaac
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Chapter 2

Stochastic Differential Equations

2.1 Stochastic Integrals

To maintain consistency with the notations and symbols, we have followed the conventions

given in Stochastic Differential Equations with Applications, X. Mao [18]. Let {Ω,F,P} be

a complete probability space that satisfies usual conditions. Let B(t) be a one dimensional

Brownian motion defined on this space adapted to the above filtration. we define the

space M 2([a, b];R) for 0 ≤ a < b <∞ as the set of real valued measurable {Ft} adapted

processes f = {ft}a≤t≤b such that

||f ||2a,b = E

 b∫
a

|f(t)|2 dt

 <∞. (2.1)

Two elements f1, f2 ∈ M 2([a, b];R) are identified as the same, if ||f1 − f2||2a,b = 0, and

we write f1 = f2.

Definition 2.1.1 (Simple processes). A real valued stochastic process g = {g(t)}a≤t≤b
is called a simple process if there exists a partition a = t0 < t1 < t2 < · · · < tk = b of

[a,b], and bounded random variables ξi, 0 ≤ i ≤ k− 1 such that ξi is Fti measurable and

g(t) = ξ0I[t0,t1](t) +
k−1∑
i=1

ξiI(ti,ti+1](t). (2.2)

10



Denote by M0([a, b];R) be the family of all such processes. Then we define

b∫
a

g(t) dB(t) =
k−1∑
i=1

ξi(Bi+1(t)−Bi(t)) (2.3)

and call it the stochastic integral of g with respect to the Brownian motion {Bt} or the

Itô integral.

The following results hold true,

Lemma 2.1.2. If g ∈M0([a, b];R), then

1. E
(

b∫
a

g(t) dB(t)

)
= 0

2. E
∣∣∣∣ b∫
a

g(t) dB(t)

∣∣∣∣2 = E
(

b∫
a

|g(t)|2 dt

)
we define the general Itô integrals. as follows.

Theorem 2.1.3. For any f ∈M 2([a, b];R), there exists a sequence {gn} of simple pro-

cesses such that

lim
n→∞

E

 b∫
a

|f(t)− gn(t)|2 dt

 = 0 (2.4)

Then the Itô integral of f with respect to {Bt} is defined by

b∫
a

f(t) dB(t) = lim
n→∞

b∫
a

gn(t) dB(t) (2.5)

in L2(Ω;R)

2.1.1 Properties of Itô integrals

Let f, g ∈M 2([a, b];R), and let α, β be two real numbers. Then we have

1.
b∫
a

f(t) dB(t) is Fb measurable.

2. E
(

b∫
a

f(t) dB(t)

)
= 0.

3. E
∣∣∣∣ b∫
a

f(t) dB(t)

∣∣∣∣2 = E
(

b∫
a

|f(t)|2 dt

)
.
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4.
b∫
a

αf(t) + βg(t) dB(t) = α
b∫
a

f(t) dB(t) + β
b∫
a

g(t) dB(t).

The following theorem is extremely useful, while estimating bounds when proving exis-

tence uniqueness theorems.

Theorem 2.1.4. let f ∈ M 2([a, b];R), then the integral I(t) =
t∫
0

f(s) dB(s) for 0 ≤
t ≤ T is a square integrable continuous martingale with respect to the filtration {Ft}. In

particular

E

 sup
0≤t≤T

∣∣∣∣∣∣
t∫

0

f(s) dB(s)

∣∣∣∣∣∣
2 ≤ 4E

 T∫
0

|f(s)|2 ds

 . (2.6)

Definition 2.1.5. (Quadratic variation of a martingale) Let M(t) be a square inte-

grable continuous martingale. Then there exists a unique integrable adapted increasing

process denoted by [M,M ]t such that {M2
t − [M,M ]t} is a continuous martingale van-

ishing at t = 0.

Theorem 2.1.6 (Quadratic variation of martingale given in theorem 2.1.4 ). Let

f ∈M 2([a, b];R). Then the indefinite integral {I(t)} defined in theorem 2.1.4 is square

integrable continuous martingale with the quadratic variation given by,

[I, I]t =

b∫
a

|f(s)|2 ds (2.7)

for 0 ≤ t ≤ T

2.1.2 Moment Inequalities

Let B(t) = (B(t1), B(t2), . . . , B(td))
T be a d dimensional Brownian motion defined on the

complete probability space (Ω,F,P) adapted to the filtration {Ft}t≥0. Then the following

inequalities hold true.

1. Let p ≥ 2 and g ∈M 2([a, b];Rm×d) such that

E

 T∫
0

|g(s)|pds

 <∞.
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Then

E

∣∣∣∣∣∣
T∫

0

g(s) dB(s)

∣∣∣∣∣∣
p

≤
(
p(p− 1)

2

)p/2
T

p−2
2 E

 T∫
0

|g(s)|p ds

 . (2.8)

In particular if p = 2, there is equality. Moreover

E

 sup
0≤t≤T

∣∣∣∣∣∣
T∫

0

g(s) dB(s)

∣∣∣∣∣∣
p ≤ ( p3

p(p− 1)

)p/2
T

p−2
2 E

 T∫
0

|g(s)|p ds

 . (2.9)

2. Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable nonnegative function on [0,T],

and let v(·) be nonnegative integrable function on [0,T]. If

u(t) ≤ c+

t∫
0

v(s)u(s)ds for 0 ≤ t ≤ T (2.10)

then

u(t) ≤ c× exp

 t∫
0

v(s)ds

 for 0 ≤ t ≤ T. (2.11)

The above inequality (2) is called Gronwall’s inequality. Next we state a class of

lemmas called Itô’s lemma which lies in the heart of stochastic differential equations.

2.2 Itô’s Lemma

Definition 2.2.1. A one dimensional Itô process is a continuous adapted process x(t)

on t ≥ 0 of the form

x(t) = x(0) +

t∫
0

f(s) ds+

t∫
0

g(s) dB(s) (2.12)

where f ∈ L1(R+;R) and g ∈ L2(R+;R). We shall say x(t) has the stochastic differential

given by,

dx(t) = f(t)dt+ g(t)dB(t). (2.13)

Lemma 2.2.2 (One dimensional Itô’s lemma). Let x(t) be an Itô process with the

stochastic differential

dx(t) = f(t)dt+ g(t)dB(t) (2.14)
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where f ∈ L1(R+;R) and g ∈ L2(R+;R). Let V ∈ C2,1(R × R+;R). Then V (x(t), t) is

again an Itô process with the stochastic differential,

dV (x(t), t) =

[
Vt(t, x(t)) + f(t)Vx(t, x(t)) +

1

2
g2(t)Vxx(t, x(t))

]
dt

+ Vx(t, x(t))g(t)dBt.

(2.15)

Definition 2.2.3. A d-dimensional Itô process is an Rd -valued continuous adapted

process x(t) = (x1(t), x2(t), . . . , xn(t))T on t ≥ 0 of the form,

x(t) = x(0) +

t∫
0

f(s) ds+

t∫
0

g(s) dB(s) (2.16)

where f = (f1, f2, . . . , fd)
T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). we shall say

that x(t) has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt+ g(t)dB(t). (2.17)

Lemma 2.2.4 (Multi dimensional Itô’s lemma). Let x(t) be a d dimensional Itô

process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t) (2.18)

where f = (f1, f2, . . . , fd)
T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). Then

V (x(t), t) ∈ C 2,1(Rd×R+;R) is again an Itô process with the stochastic differential given

by

dV (x(t), t) =

[
Vt(t, x(t)) + Vx(t, x(t))f(t) +

1

2
Tr
(
gT (t)Vxx(x(t), t)g(t)

)]
dt

+ Vx(x(t), t)g(t)dB(t).

(2.19)
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With this we stop the discussion on stochastic calculus and next chapter onwards

we shall explain the real situation with which we are working. But any research in

the following field require a thorough understanding of the previously mentioned two

chapters.

baaac
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Chapter 3

Stochastic delay integro differential

equations

3.1 General description

Consider the probability space (Ω,F ,P), where P is the probability measure, with the

filtration {Ft}t≥0. Let {B(t)}t≥0 be a one dimensional Brownian motion adapted to the

aforementioned filtration {F}t≥0. We propose to give a general framework for stochas-

tic (Itô type) integro differential equations involving delay integrals to which equation

becomes a genuine special case. In this chapter we consider generic stochastic integro

differential equations with delay integrals of the form,

dy(t) = F

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 dt

+ G

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 dB(t).

(3.1)

For simplicity, let us denote,

Iy(t) =

t∫
t−τ

f(s, y(s)) ds, Jy(t) =

t∫
t−τ

g(s, y(s)) dB(s).

We shall call the first integral, Iy(t) as deterministic delay integral and the second

integral Jy(t) as stochastic delay integral . The properties of the coefficient functions will
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be delineated in a separated section. Here τ is a positive constant which represents delay

in the time. From the definitions of Iy(t) and Jy(t), we can infer, the minimal initial data

that must be specified to obtain a solution is y(t) = ϕ(t) for t ∈ [0, τ ]. It is worthwhile to

notice that the initial data is a member of some suitable function class. With properly

defined coefficient functions, and the initial data which belongs suitable function space,

the immediate question to answer is the existence of solutions for the equation (3.1) in

a bounded interval [τ, T ] for some T > τ . Towards this goal, in the next section, we

clearly specify the properties of coefficient functions appearing in the equation (3.1) and

the assumptions we impose on them. We shall be using these conditions and hypotheses

to prove many interesting results further ahead.

3.2 Assumptions

Firstly, we give the range and domain of the following functions,

F : R+ × R3 → R; G : R+ × R3 → R. (3.2)

f : R+ × R→ R; g : R+ × R→ R. (3.3)

In addition to that F,G ∈ L2(R+ × R3) and f, g ∈ L2(R+ × R). Moreover F,G, f and g

are assumed to be continuous and {Ft} adapted random functions. We assume that,

A1). |F (t, x, y, z)|2 + |G(t, x, y, z)|2 ≤ K2(1 + |x|2 + |y|2 + |z|2),

A2). |f(t, x)|2 + |g(t, x)|2 ≤ K2(1 + |x|2),

B1). |Fi(t, x1, y1, z1)− Fi(t, x2, y2, z2)|2 ≤ K2(|x1 − x2|2 + |y1 − y2|2 + |z1 − z2|2),

B2). |fi(t, x1)− fi(t, x2)|2 ≤ K2(|x1 − x2|2).

where Fi = F or G and fi = f or g. Without loss of generality we can assume K as a

global constant since assumptions A1 to B2 involve only finite number of constants, and

we can choose the maximum of them as K. We transform equation (3.1) to the integral

form,

y(t) = ϕ(τ) +

∫ t

τ

F (s, y(s), Iy(s), Jy(s)) ds+

∫ t

τ

G(s, y(s), Iy(s), Jy(s)) dB(s). (3.4)
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Finally, we assume that ϕ(t) ∈ L2([0, τ ]), continuous and {Ft} adapted.

3.3 Main Theorem

We intend by this section to establish existence and uniqueness of the solution for equation

(3.1). The traditional method of successive approximations is used to obtain solutions.

We define the successive approximates as,

yn(t) = ϕ(t)I[0,τ ] + ϕ(τ)I(τ,T ] +

t∫
τ

I(τ,T ](s)F (s, yn−1(s), Iyn−1(s), Jyn−1(s)) ds.

+

t∫
τ

I(τ,T ](s)G(s, yn−1(s), Iyn−1(s), Jyn−1(s)) dB(s)

y0(t) = ϕ(t)I[0,τ ] + ϕ(τ)I(τ,T ].


(3.5)

For t ∈ [τ, T ], we can express the above expression in a simplified form as,

yn+1(t) = ϕ(τ) +

∫ t

τ

F (s, yn(s), Iyn(s), Jyn(s)) ds

+

∫ t

τ

G(s, yn(s), Iyn(s), Jyn(s)) dB(s). (3.6)

Together with the previously defined successive approximates, we can proceed to the

existence and uniqueness of solutions.

Theorem 3.3.1 (Existence and Uniqueness). Assume A1, A2, B1 and B2 hold true. If

ϕ(t) is an Ft adapted continuous process with sup0≤t≤τ |ϕ(t)|2 < ∞, then there exists a

unique solution y(t) for equation (3.4).

Proof. We have,

yn+1(t)− yn(t) =

∫ t

τ

(F (s, yn(s), Iyn(s), Jyn(s))− F (s, yn−1(s), Iyn−1(s), Jyn−1(s)))ds

+

∫ t

τ

(G(s, yn(s), Iyn(s), Jyn(s))−G(s, yn−1(s), Iyn−1(s), Jyn−1(s)))dB(s).

(3.7)

The following estimate is straightforward using Schwartz inequality, isometric property
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of Itô integral, and assumptions A1 and B1.

E
(
|y1(t)− y0(t)|2

)
≤ 2K2(1 + t− τ)E

∫ t

τ

(
1 + |y0(s)|2 + |Iy0(s)|2 + |Jy0(s)|2

)
ds

≤ 2K2(t− τ)(1 + t− τ)(1 +K2τ 2 +K2τ)

[
1 + E sup

0≤t≤τ
|ϕ(t)|2

]
≤M2µ(t− τ). (3.8)

whereM2(t) = 2K2(1+t−τ)p(τ), µ = 1+E
(

sup
0≤t≤τ

|ϕ(t)|2
)

, and p(x) = 1+K2x+K2x2.

Similarly,

E|yn+1(t)− yn(t)|2 ≤ 2K2(t− τ + 1)

∫ t

τ

E|yn(s)− yn−1(s)|2 ds

+ 2K2(t− τ + 1)

∫ t

τ

E|Iyn(s)− Iyn−1(s)|2 ds + 2K2(t− τ + 1)

∫ t

τ

E|Jyn(s)− Jyn−1(s)|2 ds.

(3.9)

The last two terms in equation (3.9) can be estimated as,

t∫
τ

E|Iyn(s)− Iyn−1(s)|2 ds ≤ K2τ(t− τ)

∫ t

τ

|yn(s)− yn−1(s)|2 ds.

t∫
τ

E|Jyn(s)− Jyn−1(s)|2 ds ≤ K2(t− τ)

∫ t

τ

|yn(s)− yn−1(s)|2 ds.

Substituting these bounds on equation (3.9),

E|yn+1(t)− yn(t)|2 ≤ 2K2(t− τ + 1)(1 +K2τ(t− τ) +K2(t− τ))

∫ t

τ

E|yn(s)− yn−1(s)| ds

≤ 2K2(t− τ + 1)(1 + p(t)− p(τ))

∫ t

τ

E|yn(s)− yn−1(s)| ds

≤M2(t)

∫ t

τ

E|yn(s)− yn−1(s)| ds. (3.10)

without any confusion we redefineM2(t) = 2K2(4 + t− τ) max (p(τ), 1 + p(t)− p(τ)), so

that both equations (3.8) and (3.10) hold true. Finally assume that

E|yn+1(t)− yn(t)|2 ≤ (M2(t)(t− τ))n+1

(n+ 1)!
µ. (3.11)
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. We proceed by induction to prove the assumption,

E|yn+2(t)− yn+1(t)|2 ≤M2(t)

∫ t

τ

E|yn+1(s)− yn(s)| ds

≤M2(t)

∫ t

τ

(M2(s)(s− τ))n+1

(n+ 1)!
µ ds

=
(M2(t)(t− τ))n+2

(n+ 2)!
. (3.12)

In the preceding inequality, we have used the monotonicity of the bound functionM2(t).

Then again using Schwartz inequality, isometry property and Doob’s martingale inequal-

ity we can prove that,

E
(

sup
τ≤t≤T

|yn+1(t)− yn(t)|2
)
≤ 2K2(4 + T − τ)(1 + p(T )− p(τ))

∫ T

τ

E|yn(s)− yn−1(s)|2 ds

=M2(T )

∫ T

τ

E|yn(s)− yn−1(s)|2 ds

≤ (M2(T )(T − τ))n+1

(n+ 1)!
µ.

Applying Chebyshev’s inequality,

P
(

sup
τ≤t≤T

|yn+1(t)− yn(t)|2 ≥ 2−n
)
≤ (2M2(T )(T − τ))n+1

(n+ 1)!
µ. (3.13)

Since
∑
n

2−n
(2M2(T )(T − τ))n

n!
µ ≤ ∞, Borel - Cantelli lemma implies,

P
(

sup
τ≤t≤T

|yn+1(t)− yn(t)|2 < 2−n, n ↑ ∞
)

= 1. (3.14)

Therefore the partial sums,
∑n−1

i=0 yi+1(t)−yi(t)+ϕ(τ) = yn(t) is uniformly convergent in

t ∈ [τ, T ] as well as in L2 norm by (3.12). Denote this uniform limit by y(t) and because

of being the uniform limit of Ft adapted continuous functions, y(t) is also continuous

and Ft adapted.

Next we check the uniqueness. For that purpose assume that x(t) and y(t) are two

solutions of (3.1), then as we did in the existence part for some generic constant C(T ),

E
(

sup
τ≤s≤t

|x(s)− y(s)|2
)
≤ 2(4 + t− τ)C(T )

∫ t

τ

sup
τ≤u≤s

|x(u)− y(u)|2 ds. (3.15)
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Then Gronwall’s inequality readily implies,

E
(

sup
τ≤s≤t

|x(s)− y(s)|2
)

= 0. (3.16)

Therefore x(t) = y(t) for every t ∈ [τ, T ] in the almost everywhere sense. We conclude

the theorem by establishing x(t) indeed satisfies equation (3.4). For this observe that,

E
(∣∣∣∣∫ t

τ

(F (s, yn(s), Iyn(s), Jyn(s))− F (s, y(s), Iy(s), Jy(s)) ds

+

∫ t

τ

(G(s, yn(s), Iyn(s), Jyn(s))−G(s, y(s), Iy(s), Jy(s))) dB(s)

∣∣∣∣2
)

≤ 2(1 + t− τ)C̃(T )

∫ t

t

E|xn(s)− x(s)|2 ds. (3.17)

Since yn(t)→ y(t) for every t ∈ [τ, T ] in L2, R.H.S converges to 0 in L2 norm. Hence by

dominated convergence theorem (please see L.C. Evans [10]),

∫ t

τ

F (s, yn(s), Iyn(s), Jyn(s)) ds+

∫ t

τ

G(s, yn(s), Iyn(s), Jyn(s)) dB(s)

→
∫ t

τ

F (s, y(s), Iy(s), Jy(s)) ds+

∫ t

τ

G(s, y(s), Iy(s), Jy(s)) dB(s)

in L2. Therefore, passing limit n→∞ in equation (3.6) we obtain the desired result.

This completes the proof of the entire theorem.

Though existence and uniqueness is proved, it is equally important to indicate the

space in which the solutions lives. This forms the objective of the next theorem. We

show that y(t) ∈M 2([0, T ];R).

Proposition 3.3.2. Under the assumptions of theorem 3.3.1, solution of the equation

(3.1) y(t) ∈M2([0, T ];R).

Proof. We have

|y(t)|2 ≤ 3|ϕ(τ)|2 + 3

∣∣∣∣∫ t

τ

F (s, y(s), Iy(s), Jy(s)) ds

∣∣∣∣2 + 3

∣∣∣∣∫ t

τ

G(s, y(s), Iy(s), Jy(s)) dB(s)

∣∣∣∣2 ,
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where we used the inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2. Therefore,

sup
0≤s≤t

|y(t)|2 ≤ 3|ϕ(τ)|2 + 3(t− τ) sup
0≤s≤t

s∫
τ

|F (s, y(s), Iy(s), Jy(s)|2 ds

+ 3 sup
0≤s≤t

∣∣∣∣∣∣
s∫

τ

G(s, y(s), Iy(s), Jy(s)) dB(s)

∣∣∣∣∣∣
2

.

For obtaining the preceding inequality, we have used Schwartz inequality. Taking expec-

tation on both sides and applying Doob’s martingale inequality we shall obtain,

E
(

sup
0≤s≤t

|y(s)|2
)
≤ 3

(
E|ϕ(τ)|2 + (t− τ)

∫ t

τ

E|F (s, y(s), Iy(s), Jy(s))|2 ds

+ 4

∫ t

τ

E|G(s, y(s), Iy(s), Jy(s))|2 ds

)
≤ 3

(
E|ϕ(τ)|2 + (4 + t− τ)K2p(t− τ)

∫ t

τ

(
1 + E sup

0≤u≤s
|y(u)|2

)
ds

)
.

Therefore by Gronwall’s inequality,

E
(

sup
0≤s≤T

|y(s)|2
)
≤ 3E|ϕ(τ)|2 exp (3(4 + T − τ)(T − τ)p(T − τ))− 1 <∞. (3.18)

Therefore,

y(t) ∈M 2 ([0, T ] : R) .

3.4 Boundedness of the solution

Since we have a global bound on the solution y(t), given by (3.18), it is natural to explore

weather the pth moment of the solution is bounded or not, as a routine step in stochastic

calculus. We shall derive an exponential estimate for the pth moment of the function.

Structure of the proof is same as that of the derivation of exponential estimates of the

pth moment of solution of a general stochastic differential equation (reader may please

see [18])

Theorem 3.4.1 (pth moment exponential estimate). Let p ≥ 2, and suppose that as-
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sumptions A2 and B2 hold true. Then

E
(

sup
0≤s≤T

|y(s)|2
)
≤ 2

p
2 (1 + E|φ(τ)|2)× exp (α(T − τ)) , (3.19)

where α =
p(33pK2 + (8−K)K)

2

(
1 +K2τ 2 +K2τ

)
.

Proof. Applying Itô formula to the function (1 + |y(t)|2)
p

2 , we shall obtain,

d(1 + |y(t)|2)
p

2 =

p
2

(1 + |y(t)|2)
p− 2

2 × 2|y(t)|F (t, y(t), Iy(t), Jy(t))

+
1

2
G2(t, y(t), Iy(t), Jy(t))

p(1 + |y(t)|2)
p− 2

2 + |y(t)| × p(p− 2)(1 + |y(t)|2)
p− 4

2 |y(t)|

 dt+

+

p
2

(1 + |y(t)|2)
p− 2

2 × 2|y(y)| ×G(t, y(t), Iy(t), Jy(t))

 dB(t)

=

p(1 + |y(t)|2)
p− 2

2 |y(t)|F (t, y(t), Iy(t), Jy(t)) +
p

2
G2(t, y(t), Iy(t), Jy(t))(1 + |y(t)|2)

p− 2

2

+
p(p− 2)

2
(G(t, y(t), Iy(t), Jy(t))y(t))2 (1 + |y(t)|2)

p− 4

2

 dt

+ p(1 + |y(t)|2)
p− 2

2 |y(t)|G(t, y(t), Iy(t), Jy(t)) dB(t).

Integrating the above expression from τ to t, we shall obtain,

(1 + |y(t)|2)
p

2 ≤ 2
p−2
2 (1 + |ϕ(τ)|p) + p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)F (s, y(s), Iy(s), Jy(s))ds

+

t∫
τ

(1 + |y(s)|2)
p− 2

2 G2(s, y(s), Iy(s), Jy(s))ds

+
p(p− 2)

2

t∫
τ

(1 + |y(s)|2)
p− 4

2 (1 + |y(s)|2)G2(s, y(s), Iy(s), Jy(s))ds

+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jys(s))dB(s).

Next, we club together second and third integral in the above expression. After that,
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upon rearranging the terms, we shall obtain,

(1 + |y(t)|2)
p

2 ≤ 2
p−2
2 (1 + |ϕ(τ)|2)

+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2

(
y(s)F (s, y(s), Iy(s), Jy(s)) +

p− 1

2
G2(s, y(s), Iy(s), Jy(s))

)
ds

+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s)) dB(s).

Then by applying linear growth condition that has been specified in the initial section

we obtain,

(1 + |y(t)|2)
p− 2

2 ≤ 2
p−2
2 (1 + |ϕ(τ)|2)

+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2

(
4K +

K2(p− 1)

2

)
(1 + |y(s)|2 + |Iy(s)|2 + |Jy(s)|2)ds

+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s))dB(s).

≤ 2
p−2
2 (1 + |ϕ(τ)|2) + p

(
4K +

K2(p− 1)

2

)[∫ t

τ

(1 + |y(s)|2)
p

2 ds +

+

t∫
τ

(1 + |y(s)|2)
p− 2

2 |Iy(s)|2ds+

t∫
τ

(1 + |y(s)|2)
p− 2

2 |Jy(s)|2ds

+

p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s))dB(s).

We have to estimate each of the integrals in the first square bracket. On estimating them,

t∫
τ

(1 + |y(s)|2)
p− 2

2 |Iy(s)|2ds ≤ K2τ 2
t∫

τ

(
1 + sup

[s−τ,s]
|x(u)|2

)p
2

ds. (3.20)

Similarly,

∫ t

τ

(1 + |y(s)|2)
p− 2

2 |Jy(s)|2ds ≤
t∫

τ

(1 + |y(s)|2)
p− 2

2

∣∣∣∣∣∣
s∫

s−τ

g(u, y(u))dB(u)

∣∣∣∣∣∣
2

ds. (3.21)
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Therefore,

(1 + |y(s)|2)
p

2 ≤ 2
p−2
2 (1 + |ϕ(τ)|2) + p

(
4K +

K2(p− 1)

2

) t∫
τ

(1 + |y(s)|2)
p

2 ds

+ K2τ 2
t∫

τ

(
1 + sup

[s−τ,s]
|y(u)|2

)p
2

ds+

t∫
τ

(1 + |y(s)|2)
p− 2

2

∣∣∣∣∣∣
s∫

s−τ

g(u, y(u))dB(u)

∣∣∣∣∣∣
2

ds


+ p

t∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s))dB(s).

(3.22)

Taking expectation of supremum on both sides we shall obtain,

E

(
sup
0≤s≤t

(1 + |y(s)|2)
p

2

)
≤ 2

p−2
2 (1 + E|φ(τ)|2)

+ p

(
4K +

K2(p− 1)

2

) t∫
τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds+K2τ 2
t∫

τ

E
(

1 + sup
s−τ≤u≤s

|y(u)|2
)p

2 ds

+ K2τ

t∫
τ

E
(

1 + sup
s−τ≤u≤s

|y(u)|2
)p

2 ds


+ pE

 sup
0≤s≤t

s∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s)) dB(s)

 .

(3.23)

Using equation (2.9) we can estimate the last term as follows,

pE

 sup
0≤s≤t

s∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s)) dB(s)


≤ pE

 sup
0≤s≤t

∣∣∣∣∣∣
s∫

τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s)) dB(s)

∣∣∣∣∣∣


≤ p

√(
32

1

)
E

 t∫
τ

(1 + |y(s)|2)p−2|y(s)G(s, y(s), Iy(s), Jy(s)|2ds


1

2
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≤ 4p
√

2E

 sup
τ≤s≤t

(1 + |y(s)|2)
p

2

t∫
τ

(1 + |y(s)|2)
p− 4

2 |y(s)G(s, y(s), Iy(s), Jy(s)|2ds


1

2

≤ 1

2
E

(
sup
0≤s≤t

(1 + |y(s)|2)
p

2

)
+ 16p2K2E

 t∫
τ

(1 + |y(s)|2)
p− 2

2 (1 + |y(s)|2 + |Iy(s)|2 + |Jy(s)|2) ds

 .

Then as done in the estimate (3.23), we shall have,

pE

 sup
0≤s≤t

s∫
τ

(1 + |y(s)|2)
p− 2

2 y(s)G(s, y(s), Iy(s), Jy(s)) dB(s)

 ≤
1

2
E

(
sup
0≤s≤t

(1 + |y(s)|2)
p

2

)
+ 16p2K2

 t∫
τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds

+ K2τ 2
t∫

τ

E
(

1 + sup
s−τ≤u≤s

|y(u)|2
)p

2 ds+K2τ

t∫
τ

E
(

1 + sup
s−τ≤u≤s

|y(u)|2
)p

2 ds

 .
(3.24)

Combining the inequalities (3.24) and (3.23) we will come by the following inequality,

1

2
E

(
(1 + sup

0≤s≤t
|y(s)|2)

p

2

)
≤ 2

p−2
2 (1 + E|φ(τ)|2)

+
p(33pK2 + (8−K)K)

2

 t∫
τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds+ K2τ 2
t∫

τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds

+ K2τ

t∫
τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds

 (3.25)

E

(
sup
0≤s≤t

(1 + |y(s)|2)
p

2

)
≤ 2

p
2 (1 + E|φ(τ)|2)

+
p(33pK2 + (8−K)K)

2

(
1 +K2τ 2 +K2τ

) t∫
τ

E
(

1 + sup
0≤u≤s

|y(u)|2
)p

2 ds

(3.26)
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Applying Gronwall’s inequality we shall obtain,

E

(
(1 + sup

0≤s≤t
|y(s)|2)

p

2

)
≤

2
p
2 (1 + E|φ(τ)|2)× exp

(
p(33pK2 + (8−K)K)

2

(
1 +K2τ 2 +K2τ

)
(t− τ)

)
.

(3.27)

Therefore,

E
(

sup
0≤s≤t

|y(s)|2
)
≤ 2

p
2 (1+E|φ(τ)|2)×exp

(
p(33pK2 + (8−K)K)

2

(
1 +K2τ 2 +K2τ

)
(t− τ)

)
.

(3.28)

Hence,

‖y(s)‖20,T ≤ 2
p
2 (1+E|φ(τ)|2)×exp

(
p(33pK2 + (8−K)K)

2

(
1 +K2τ 2 +K2τ

)
(T − τ)

)
.

This completes the proof.

3.5 Stability of solutions

In order to analyze the stability of solutions, we restrict our attention to a subclass of

the general equation (3.1). We consider stochastic delay integro differential equation in

which the delay integral and y(t) appear as arguments of separate function. Firstly, we

define the general form of the equation as,
dy(t)

dt
= γy(t) + f

t, t∫
t−τ

g(s, y(s)) dB(s)

 for t ∈ [τ, T ],

y(t) = ϕ(t) for t ∈ [0, τ ].

(3.29)

where γ ∈ R. Before delving into the analysis we must justify our selection,

� Stability of (3.29) can be studied easily because of its simple formulation. We can

extend results that was being done in the deterministic delay differential equation

to the equations of the form (3.29).

� (3.29) is of sufficient generality by which volatility equation becomes a particular
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case of it.

Theory of integro differential equation with deterministic delay is well studied. For in-

stance, consider the following type of equations.
dy(t)

dt
= f

t, y(t),

t∫
t−τ

g(s, y(s)) ds

 for t ∈ [τ, T ],

y(t) = ϕ(t) for t ∈ [0, τ ].

(3.30)

Properties of the above equation has been thoroughly investigated by different authors.

For instance Chengjian Zhang et al. [25] studied the stability of the (3.30) rigorously.

We can extend these results to equation (3.29) easily. Reader may please refer [25] for

further details. We make use of the following definitions.

Definition 3.5.1. The stochastic system (3.29) is said to be globally stable in second

moment if there exists a constant C such that,

E (y(t)− ỹ(t))2 ≤ C × sup
0≤θ≤τ

E(ϕ(θ)− ψ(θ))2, (3.31)

for every t ∈ [τ, T ], where y(t) and ỹ(t) are solutions of (3.29) with respective data ϕ(t)

and ψ(t).

Before stating the main theorem we shall state a lemma by C.Zhang et.al. [25]. It is

an extension of Halanay’s theorem, which was proven by Baker and Tang [4].

Lemma 3.5.2 (Halanay). Assume that the scalar function v(t) is continuous and non

negative for t ≥ t0 − τ , and satisfies,

D+v(t) ≤ −Av(t) +B sup
t−τ≤s≤t

v(s), ∀t ∈ [t0,∞) (3.32)

and v(t) = |Φ(t)| for every t ∈ [t0 − τ, t0], wher D+v(t) is the right hand derivative of

v(t) and Φ(t) is continuous and not identically vanishing for t ∈ [t0− τ, t0]. A and B are

non negative constants with −A+B < 0. Then,

v(t) ≤ sup
t0−τ≤s≤t0

|Φ(s)|, ∀t ≥ t0 (3.33)

The following theorem is an easy consequence of the above lemma.
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Theorem 3.5.3 (Global stability). Assume that f(t, Jy(t)) is a uniformly bounded func-

tion, so that |f(t, Jy(t)| < M for every t with M > 0. Then the stochastic system (3.29)

is globally stable in second moment whenever γ <
−(K2τ + 1)

2
.

Proof. Firstly define ȳ(t) = y(t)− ỹ(t). Therefore,

D+

(
E|ȳ(t)|2

)
= lim

h→0

E|ȳ(t+ h)|2 − E|ȳ(t)|2)
h

= lim
h→0

E(|ȳ(t+ h)|2 − |ȳ(t)|2)
h

≤ E
(

lim
h→0

∣∣∣∣ |ȳ(t+ h)|2 − |ȳ(t)|2
h

∣∣∣∣)
≤ E

(
lim
h→0

∣∣∣∣D+(ȳ(t)2)h+ o(h)

h

∣∣∣∣)
≤ E

(
D+(ȳ(t)2)

)
.

The last term exists and is well defined from (3.29) and the uniform boundedness of f .

Therefore D+

(
E (ȳ(t))2

)
exists, and we can apply usual calculus rules. Proceeding like

this,

D+ (ȳ(t))2 = 2ȳ(t)D+ (ȳ(t)) = 2ȳ(t)D+(y(t)− ỹ(t))

= 2ȳ(t)D+(y(t)− ỹ(t))

= 2ȳ(t)D+y(t)− 2ȳ(t)D+ỹ(t)

= 2ȳ(t) (γy(t) + f(t, Jy(t)))− 2ỹ(t) (γỹ(t) + f(t, Jỹ(t)))

= 2γȳ(t)2 + 2ȳ(t) (f(t, Jy(t))− f(t, Jỹ(t))) .

Taking expectation on both sides,

D+E (ȳ(t))2 ≤ 2γEȳ(t)2 + Ey(t)2 + E(f(t, Jy(t))− f(t, Jỹ(t)))2. (3.34)

Now applying the linear growth condition of the function f ,
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D+E (ȳ(t))2 ≤ 2γȳ(t)2 + E(y(t)2) +K2E

 t∫
t−τ

(y(t)− ỹ(t))dB(s)

2

≤ (2γ + 1)Eȳ(t)2 +K2τ sup
t−τ≤s≤t

E(ȳ(t))2.

Take A = −(2γ + 1) and B = K2τ . For applying Halanay’s theorem, we need

1. A > 0⇒ γ <
−1

2
.

2. −A+B < 0⇒ (2γ + 1) +K2τ < 0. Therefore γ <
−(K2τ + 1)

2
.

Therefore, for every γ <
min (−1,−K2τ − 1)

2
, all the hypotheses of Halanay’s theorem

will be satisfied. But min (−1,−K2τ − 1) = −K2τ − 1 as K2 and τ are nonnegative.

Hence, for every γ <
−(K2τ + 1)

2
, we have the following result.

E(y(t)− ỹ(t))2 ≤ sup
0≤s≤τ

E(ϕ(s)− ψ(s))2. (3.35)

which completes the theorem.

From the above theorem it is clear that the stochastic system defined in (3.29) is

globally stable in second moment with C = 1 in accordance with the definition 3.5.1.

Therefore (3.29) is a contractive or dissipative system for γ,K and τ satisfying the relation

specified by theorem 3.5.3.

baaac
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Chapter 4

Numerical Analysis

Introduction

In chapter 3, we derived important theoretical properties of general stochastic delay inte-

gro differential equations (see section 3.3) like the existence and uniqueness of solutions,

square integrability, Lp boundedness and stability of a subclass of equations. Though the

proof of the existence and uniqueness theorem (Theorem 3.3.1) gives a numerical scheme

to obtain approximate solutions, for large iterations it is very difficult to continue with

this scheme. There are many real life applications in mathematical finance [15], physics

[21] and population dynamics [12] which make use of SDIDEs. Because of the inherent

complexity of these equations, finding an exact solution is very difficult. Therefore we

have to device numerical methods to obtain approximate solutions.

In this chapter, we try to develop an analogous version of the classical Euler -

Maruyama method for SDIDE. We divide this chapter into three sections. In the first

section, we explain the numerical scheme. A detailed error analysis is provided in the

second section, and we obtained that for a bounded interval the error is of the order of

the mesh size, i.e., δ(y(t)) = O(h), where δ(y(t)) is the error in y(t). In the third section,

we illustrates the theoretical results using numerical examples.
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4.1 Euler - Maruyama method for SDIDE

We consider a sub class of SDIDE of the following form.

dy(t)

dt
= f(t, y(t)) +G(t, Jy(t)), ∀t ∈ (τ, T ],

y(t) = ϕ(t), ∀t ∈ [0, τ ],

Jy(t) =

t∫
t−τ

g(u, y(u)) dB(u), ∀t ∈ [0, τ ].

(4.1)

We assume that the functions f(t, y(t)), G(t, Jy(t)) and g(u, y(u)) are Lipschitz contin-

uous and linearly growing in their respective domains. Then, theorem 3.3.1 guarantees

a unique solution for equation (5.3). In the following section we explain a numerical

method called Euler - Maruyama scheme to obtain numerical solutions, which approx-

imate the unique solution guaranteed by theorem 3.3.1, for a the subclass of equations

given in (5.3).

4.1.1 Numerical scheme

Assume that the domain of interest is a bounded interval in time [0, T ], with τ ∈ [0, T ).

Choose a mesh size h such that N =
T

h
and M =

τ

h
are both positive integers. With

the above choice of h, define the partition of [0, τ ] ∪ (τ, T ] as tn = (n − 1)h for n =

1, 2, · · · , N + 1. Therefore, t1 = 0, tM+1 = τ and tN+1 = T . Figure 4.1 shows the

discretization of time interval in which the numerical scheme is implemented. We know

| || | | | |b b b b

0 h 2h 3h Mh = τ

b b b b b b

tN+1t1

Nh = T(N − 1)h

t2 t3 t4 tNtM+1

Figure 4.1: General grid on which the numerical schemes are implemented. h denotes
the size of the mesh. N = T/h is the number of iterations.

that y(t) = ϕ(t),∀t ∈ [0, τ ] and it is given a priori. Therefore the exact solution till the

iteration n = M + 1 is known to us. Hence by using this information, our aim is to come

by the value of y(t) in the next interval [τ, τ + h].

Now we introduce a few notations. For any k ∈ {1, 2, · · · , N + 1}, yk denotes the
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approximate value at tk and y(tk) exact value at k. If so, then the Euler - Maruyama

scheme is defined as,

yi+1 = yi + h(f(ti, yi) +G(Jyi)). (4.2)

where i = M + 1, · · · , N . In equation (4.2), we can see a term Jyi appears, which stands

the for the approximated delay Itô integral. We define it as,

ti∫
ti−τ

g(s, y(s))dB(s) =
i−1∑

k=i−M

tk+1∫
tk

g(s, y(s))dB(s).

u
i−1∑

k=i−M

g(tk, yk)(B(tk+1)−B(tk)).

u
i−1∑

k=i−M

g(tk, yk)ζk = Jyi,

where ζk ≈ N(0, h). If we assume i = M+1, we must know the values yM+1, yM , yM−1, · · · , y1
a priori. But the information up to this level is known from equation (5.3), as yk = ϕ(tk)

for k ≤M +1. Hence, the equation (4.2) makes sense. For analytical purpose, it is easier

to define equation (4.2) as a piece wise step function.

We define for i ≥M + 1

ȳ(t) =
i∑

k=1

ykIk, (4.3)

ỹ(t) =
i∑

k=1

y(tk)Ik, (4.4)

where Ik = I[tk−1,tk]. Then (4.2) can be reformulated as,

ȳ(t) = ȳ(ti) +

t∫
ti

f(s, ȳ(ti))ds+

t∫
ti

G(Jȳ(ti))ds, t ∈ (ti, ti+1]. (4.5)

It is easy to check that the previous equation is consistent with equation (4.2). More

over, for the interval (ti, t] we can express the exact value as,

y(t) = y(ti) +

t∫
ti

f(t, y(s))ds+

t∫
ti

G(Jy(s))ds. (4.6)
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For most of the SDIDEs, we can hardly find the analytical solution. Hence in the case

of SDIDE, we are not able to compare approximate values with exact values. That is,

mean of the error is not a feasible quantification of error for SDIDEs. The above type

of convergence in which exact solution itself is close enough to the numerical solution is

called the strong convergence. An alternative is to use the error of means which is called

the weak convergence. In weak convergence, we are not assured with path wise closeness,

but we have the moments of the numerical solution converges to the respective moments

of the actual solution. That is, the exact solution and the numerical solution are having

the same probability distribution. Errors in the respective cases are called strong error

and weak error. We make the above concepts mathematically rigorous next. Define the

weak error as,

δw(tk) = |E(y(tk))− 〈yk〉| . (4.7)

where 〈yk〉 is the average of yk over a large number of simulations. For completeness, we

specify the strong error also,

δ(tk) = E |y(tk)− yk| . (4.8)

In addition, we define δs(tk) = E |y(tk)− yk|2 as the mean square error. If δs(tk)→ 0, we

say the numerical scheme converge in mean square. It is clear that strong convergence

(δ(tk) → 0) implies weak convergence (δw(tk) → 0). Note that the converse may not be

true. We close this section with the above definitions and in the next section we prove

that the error is bounded and grows at most of the order of the mesh size, h.

4.2 Error analysis

Theorem 4.2.1. If the functions f(·, ·), G(·) and g(·, ·) satisfy the Lipschitz condition

and linear growth condition, then the Euler - Maruyama scheme defined by (4.2) in the

bounded interval [0, T ] with initial data given by (5.3) converges strongly to the unique

solution and the mean square error is at most of the order of the mesh size, h.

Proof. We mainly use the methods presented in proving the stability of the solutions (see

section 3.5). Define the function,

H(t) = y(t)− ȳ(t), ∀t ∈ [ti, ti+1]. (4.9)
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we can apply (4.6) and (4.5) to obtain,

H(t) = y(t)− ȳ(t)

= y(ti)− ȳ(ti) +

t∫
ti

(f(s, y(s))− f(s, ȳ(s))) ds+

t∫
ti

(G(Jy(s))−G(Jȳ(s))) ds

= H(ti) +

t∫
ti

(f(s, y(s))− f(s, ȳ(s))) ds+

t∫
ti

(G(Jy(s))−G(Jȳ(s))) ds.

We can express the previous expression as,

DH(t) = (f(t, y(t))− f(t, ȳ(t))) + (G(Jy(t))−G(Jȳ(t))) . (4.10)

where D =
d

dt
. Hence

DH2(t) = 2H(t)DH(t).

Applying equation (4.10),

DH2(t) = 2H(t)DH(t),

= 2H(t) ((f(t, y(t))− f(t, ȳ(t))) + (G(Jy(t))−G(Jȳ(t)))) ,

≤ (H(t))2 + ((f(t, y(t))− f(t, ȳ(t))) + (G(Jy(t))−G(Jȳ(t))))2 ,

≤ (H(t))2 + 2 (f(t, y(t))− f(t, ȳ(t)))2 + 2 (G(Jy(t))−G(Jȳ(t)))2 .

Therefore,

H2(t) ≤ H2(ti) + 2

t∫
ti

(f(s, y(s))− f(s, ȳ(s)))2 ds+

t∫
ti

(G(Jy(s))−G(Jȳ(s)))2 ds.

Taking expectation over the above expression,

E(H2(t)) ≤ E(H2(ti))+2E
t∫

ti

(f(s, y(s))− f(s, ȳ(s)))2 ds+2E
t∫

ti

(G(Jy(s))−G(Jȳ(s)))2 ds.
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Applying the Lipschitz continuity of f and G,

E(H2(t)) ≤ E(H2(ti)) + 2K2E
t∫

ti

(y(s)− ȳ(s))2 ds+ 2K2E
t∫

ti

(Jy(s)− Jȳ(s))2 ds,

≤ E(H2(ti)) + 2K2E
t∫

ti

H2(s)ds+ 2K2E
t∫

ti

(Jy(s)− Jȳ(s))2 ds. (4.11)

We have to estimate the last term in the above equation. Consider,

E
t∫

ti

(Jy(s)− Jȳ(s))2 ds ≤ E
t∫

ti

(Jy(s)− Jỹ(s) + Jỹ(s)− Jȳ(s))2 ds

≤ 2(t− ti)E
t∫

ti

(Jy(s)− Jỹ(s))2 ds+ 2(t− ti)E
t∫

ti

(Jỹ(s)− Jȳ(s))2 ds

≤ 2 sup
[ti,ti+1]

E (Jy(s)− Jỹ(s))2 + 2 sup
[ti,ti+1]

E (Jỹ(s)− Jȳ(s))2

= 2(t− ti) sup
[ti,ti+1]

E

 s∫
s−τ

(g(u, y(u))− g(u, ỹ(u)))dB(u)

2

+ 2(t− ti) sup
[ti,ti+1]

E

 s∫
s−τ

(g(u, ȳ(u))− g(u, ỹ(u)))dB(u)

2

≤ 2(t− ti)K2 sup
[ti,ti+1]

s∫
s−τ

E(y(u)− ỹ(u))2 ds+ 2(t− ti)K2 sup
[ti,ti+1]

s∫
s−τ

E(ỹ(u)− ȳ(u))2 ds

≤ 2(t− ti)K2τ sup
[ti,ti+1]

sup
[s−τ,s]

E(y(u)− ỹ(u))2 + 2(t− ti)K2τ sup
[ti,ti+1]

sup
[s−τ,s]

E(ȳ(u)− ỹ(u))2

≤ 2(t− ti)K2τ sup
[ti−τ,ti+1]

E(y(u)− ỹ(u))2 + 2(t− ti)K2τ sup
[ti−τ,ti+1]

E(ȳ(u)− ỹ(u))2

≤ 2(t− ti)K2τ sup
[ti−τ,ti+1]

E(y(u)− ỹ(u))2 + 2(t− ti)K2τ max
k≤i

E(y(tk)− yk)2

≤ 2(t− ti)K2τ sup
[ti−τ,ti+1]

E(y(u)− ỹ(u))2 + 2(t− ti)K2τ max
k≤i

EH2(tk). (4.12)

The last two steps are because of the piecewise definition of ỹ(s) and ȳ(s). Consider the

first term in equation (4.12). We have,
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sup
[ti−τ,ti+1]

E(y(u)− ỹ(u))2 = sup
∪i−M≤k≤i[tk, tk+1]

E(y(u)− ỹ(u))2.

≤ max
i−M≤k≤i

sup
[tk,tk+1]

E(y(u)− ỹ(u))2.

≤ max
k≤i

sup
[tk,tk+1]

E(y(u)− y(tk))
2. (4.13)

Therefore, substituting equation (4.13) in equation (4.12), we get,

E
t∫

ti

(Jy(s)− Jȳ(s))2 ds ≤ 2(t−ti)K2τ max
k≤i

sup
[tk,tk+1]

E(y(u)−y(tk))
2+2(t−ti)K2τ max

k≤i
EH2(tk).

(4.14)

Finally substituting equation (4.14) in equation (4.11) gives,

E(H2(t)) ≤ E(H2(ti)) + 2K2E
t∫

ti

H2(s)ds

+ 4(t− ti)K4τ max
k≤i

sup
[tk,tk+1]

E(y(u)− y(tk))
2 + 4(t− ti)K4τ max

k≤i
EH2(tk). (4.15)

Applying Gronwal’s inequality on equation (4.15), we obtain that,

E(H2(t)) ≤ E(H2(ti)) exp (α1(t− ti))

+ α2(t− ti)
(

max
k≤i

sup
[tk,tk+1]

E(y(u)− y(tk))
2 + max

k≤i
EH2(tk)

)
exp (α1(t− ti)),

(4.16)

where α1 = 2K2 and α2 = 4K2τ . Now it remains to estimate the max-sup term in

equation (4.16). We have,

E(y(s)− y(tk))
2 ≤ 2(s− tk)E

s∫
tk

|f(u, y(u))|2 du+ 2(s− tk)
s∫

tk

|G(Jy(u))|2 du.

≤ α1(s− tk)E
s∫

tk

(1 + |y(u)|2)du+ α1(s− tk)E
s∫

tk

(1 + |Jy(u)|2)du.
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≤ 2α1(s− tk)2 + α1(s− tk)
s∫

tk

E|y(u)|2du+ α1(s− tk)
s∫

tk

E|Jy(u)|2du.

≤ 2α1(s− tk)2 + α1(s− tk) sup
[tk,tk+1]

E|y(u)|2 + α1(s− tk)
s∫

tk

E|Jy(u)|2du.

≤ 2α1(s− tk)2 + α1(s− tk) sup
[tk,tk+1]

E|y(u)|2 +
1

2
α2(s− tk)2

(
1 + sup

[0,tk+1]

E|y(u)|2
)
.

≤ (s− tk)
(

2α1(s− tk) + α1 sup
[tk,tk+1]

E|y(u)|2 +
1

2
α2(s− tk)

(
1 + sup

[0,tk+1]

E|y(u)|2
))

.

≤ GT × (s− tk). (4.17)

Substituting equation (4.17) in equation (4.16) we get,

E(H2(t)) ≤ E(H2(ti)) exp (α1(t− ti))

+ α2(t− ti)
(
GT (tk+1 − tk) + max

k≤i
EH2(tk)

)
exp (α1(t− ti)). (4.18)

Therefore,

E(H2(tk+1)) ≤ E(H2(ti)) exp (α1h) + α2h

(
GTh + max

k≤i
EH2(tk)

)
exp (α1h). (4.19)

The above equation can be reformulated as,

E(H2(ti+1)) ≤ E(H2(ti)) exp (α1h) + α2

(
GT × h + max

k≤i
EH2(tk)

)
exp (α1h)

≤ E(H2(ti)) exp (α1h) + α2GTh
2 + α2 exp (α1h)hmax

k≤i
EH2(tk),

= β1E(H2(ti)) + β2h
2 + β3hmax

k≤i
EH2(tk). (4.20)

where β1 = exp (α1h), β2 = α2GT and β3 = α2 exp (α1h). Now we follow an inductive

argument. We have maxk≤i EH2(tk) = EH2(ti), since error is increasing function. Then

by strong induction,
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E(H2(ti+1)) ≤ (β1 + hβ3)E(H2(ti)) + β2h
2

≤ (β1 + hβ3)
(
(β1 + hβ3)E(H2(ti−1)) + β2h

2
)

+ β2h
2.

≤ (β1 + hβ3)
2E(H2(ti−1)) + β2h

2(β1 + hβ3) + β2h
2

After k = i−M − 1 we reach M + 1 step, where error is zero. Thus,

E(H2(ti+1)) ≤
i−M∑
k=0

β2h
2(β1 + hβ3)

k

≤ β2h
2 (β1 + hβ3)

i−M+1 − 1

β1 + hβ3 − 1

≤ β2h
2

β1 + hβ3 − 1

(
(β1 + hβ3)

i−M+1 − 1
)
.

Since β1 − 1 > 1, we have,

E(H2(ti+1)) ≤
hβ2
β3

(exp ((β1 + hβ3 − 1)(i−M + 1))− 1)

≤ hβ2
β3

(exp ((β1 + hβ3 − 1)(N −M + 1))− 1).

Note that β1 − 1 = exp (α1h) − 1. We can always choose h sufficiently small such that

β1 − 1 < h. Therefore, for this choice of h,

E(H2(ti+1)) ≤
hβ2
β3

(exp ((1 + β3)h(N −M + 1))− 1).

≤ hβ2
β3

(exp ((1 + β3)Nh)− 1).

≤ hβ2
β3

(exp ((1 + β3)T )− 1) ∀i < N + 1. (4.21)

Equation (4.21) gives a global bound for the error E(y(tk)− yk)2. Therefore the theorem

is proved.

4.3 Numerical Illustrations

In this section we illustrate the results obtained in the previous sections using two exam-

ples. All the calculations were carried out in Matlab R2011b, and important codes are
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given in a separate appendix. For all the four test cases we considered 5 different mesh

sizes h = 2−9, 2−8, 2−7, 2−6 and 2−5. For each h, we simulated 3000 paths and the average

of numerical solution at the time instant t = T is found. Then, the above obtained value

is compared with the exact expected value, which can be analytically computed. After

completing this step, we plot the weak error defined as δw(yN) = ||E(y(T ))| − |〈yN〉||
(< yN > is the computed average) against the mesh size. Since the deviation under

our concern in weak error, we expect the order of convergence to be lower than that of

the order of convergence of mean square error. Our findings corroborate this hypothesis

since the oder of convergence for examples are 0.032 and 0.027 respectively, which is much

lower than 1 (Theorem 4.2.1). Hence the term weak convergence is justified.

4.3.1 Example 1

We consider the equation,
dy

dt
= 1 +

t∫
t−1

y(s)dB(s), ∀1 < t ≤ 2,

y(t) = 1 + t, 0 ≤ t ≤ 1.

(4.22)

Taking expectation on both sides of equation (4.22), we obtain the following equation,

dE(y(t))

dt
= 1. (4.23)

Solving it, we obtain the expected value at time t as, E(y(t)) = 1 + t. Therefore, for time

t = 2, E(y(2)) = 3. The numerical results are shown in Table 4.1.

Figure 4.2 shows the variation of the error with respect to mesh size. We can clearly

see that for low mesh size, error is also low. To find the weak order of convergence, we

plotted logarithm (to the base 2) of the error against logarithm (to the base 2) of the

mesh size in figure 4.3. We took the best linear fit for both the curves. Slope of the best

linear fit for logarithmic variation gives the weak order of convergence. From the best

linear fit for logarithmic variation, we get the order of convergence as 0.0320. Equations

of linear fits, norm of residuals (∆) and figures are given below.
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Mesh size (h) Calculated expectation (〈yN〉) Weak error (δw(tN+1))

2−9 3.0085 8.5528e− 3

2−8 3.0087 8.7106e− 3

2−7 3.0088 8.8121e− 3

2−6 3.0090 9.0102e− 3

2−5 3.0094 9.3978e− 3

Table 4.1: Expected value of the numerical solution for equation (4.22) at time t = 2
is given in the second column. Deviation of the numerical value from the exact value is
given in the third column.

δw(h) = 0.0270h+ 0.0085, ∆ = 8.7647× 10−4.

log δw(h) = 0.0320 log(h)− 6.5888, ∆ = 0.0255.

Figure 4.2: Plot showing the variation of weak error with respect to mesh size for test
equation (4.22).
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Figure 4.3: Plot showing the variation of logarithm of the weak error with respect to
logarithm of the mesh size for test equation (4.22).

4.3.2 Example 2

We consider the equation,
dy

dt
= t+

t∫
t−1

y(s)dB(s), ∀1 < t ≤ 2,

y(t) = 1 + t, 0 ≤ t ≤ 1.

(4.24)

Taking expectation on both sides of equation (4.24), we obtain the following equation,

dE(y)

dt
= t. (4.25)

Solving it, we obtain the expected value at time t as, E(y(t)) =
t2 + 3

2
. Therefore, for time

t = 2, E(y(2)) =
7

2
. The numerical results are shown in Table 4.2. In example (4.24)

also low mesh size gives low error. We repeated the calculations done for example (4.22).

The weak order of convergence is obtained to be 0.0273. Equations of linear fits, norm

of residuals (∆) and figures are given below.
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Mesh size (h) Calculated expectation (〈yN〉) Weak error (δw(tN+1))

2−9 3.0089 8.9152e− 3

2−8 3.5089 9.0700e− 3

2−7 3.5090 9.1706e− 3

2−6 3.5092 9.3470e− 3

2−5 3.5096 9.6560e− 3

Table 4.2: Expected value of the numerical solution for equation (4.24) at time t = 2
is given in the second column. Deviation of the numerical value from the exact value is
given in the third column.

δw(h) = 0.0234h+ 0.0089, ∆ = 1.0164× 10−4.

log δw(h) = 0.0274 log(h)− 6.5681, ∆ = 0.0174.

Figure 4.4: Plot showing the variation of weak error with respect to mesh size for test
equation (4.24).
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Figure 4.5: Plot showing the variation of logarithm of the weak error with respect to
logarithm of the mesh size for test equation (4.24).

Conclusion

In the above two examples, viz. equation (4.22) and (4.24), we have compared the first

moment of the numerical solution and the exact solution. We expect it to be lower than

the strong order of convergence, which is found to be of the order of the mesh size by

Theorem 4.2.1. Consistent with it, we obtained the weak order of convergence to be

around 0.03.

baaac

44



Chapter 5

Volatility model

5.1 Introduction

We studied theoretical and numerical features of stochastic delay integro differential equa-

tions (SDIDE) in chapter 3 and chapter 4 respectively. The purpose of the present chapter

is to study the volatility process as a stochastic delay integro differential equation. We ap-

ply the tools developed in chapter 3 and chapter 4 to solve the SDIDE given below. This

equation was first put forward by Yuriy Kazmerchuk to study the variation of volatility

in financial market [15].

dσ2(t, St)

dt
= γV +

α

τ

 t∫
t−τ

σ(s, Ss) dB(s)

2

− (α + γ)σ2(t, St). (5.1)

In the above equation α, γ and V are positive constants. τ is the delay in time and

St = {S(t+ θ) : −τ ≤ θ ≤ 0}. S(t) is price of the underlying asset at time t. Substitute

σ2(t, St) = y(t) in equation (5.1). Then equation (5.1) is changed to the following form.

dy(t)

dt
= γV +

α

τ

 t∫
t−τ

√
y(s) dB(s)

2

− (α + γ)y(t). (5.2)

We recollect the general form of stochastic delay integro differential equation. It was well

explained in section 3.3 of chapter 3.
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dy(t) = F

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 dt

+ G

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 dB(t).

(5.3)

We compare equation (5.3) and equation (5.2). Then we understand that equation (5.2)

is a particular case of equation (5.3) where,

F

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 =

γV +
α

τ

 t∫
t−τ

g(s, y(s)) dB(s)

2

− (α + γ)y(t),

G

t, y(t),

t∫
t−τ

f(s, y(s)) ds,

t∫
t−τ

g(s, y(s)) dB(s)

 = 0,

f(s, y(s)) = 0,

g(s, y(s)) =
√
y(s).

Firstly, we have to show the existence of the solution for equation (5.2). This is done in

a step wise fashion and the steps are explained below.

Step 1. Observe that in equation (5.2), g(s, y(s)) =
√
y(s). If y(s) < 0, then g(s, y(s))

becomes a complex number. In that case equation (5.2) does not make any sense.

Therefore, first of all we must show that y(s) is non negative.

Step 2. In the second step we prove that a solution of equation (5.2) will be bounded and

continuous.

Step 3. Using step 2, we show that the stochastic delay integral in equation (5.2) has a

unique solution with help of Theorem 3.3.1.

In order to establish step 1, we state and prove a proposition. The proof for this propo-

sition is adapted from X. Mao (section 9.2, chapter 9) [18].
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Proposition 5.1.1. If y(s) ≥ 0 for every s ∈ [0, τ ], then any solution of the equation

(5.2) with γV > 1 is non negative for every t ∈ [τ, T ] almost everywhere.

Proof. We have to show that for every t, y(t) ≥ 0 almost everywhere, provided y(s) ≥ 0

for every s ∈ [0, τ ]. Let a0 = 1 and ak = exp (−k(k + 1))/2, for every k ≥ 1. Then,

∫ ak−1

ak

du

u
= log

(
ak−1
ak

)
.

= log

(
exp (−(k − 1)k/2)

exp (−k(k + 1)/2)

)
.

= log (exp k) = k.

Let ψk(u) be a continuous function such that,

1. supp(ψk) ⊂ (ak, ak−1).

2. 0 ≤ ψk(u) ≤ 2

ku
.

3.

ak−1∫
ak

ψk(u) du = 1.

Define the function φk(x) as,

φk(x) =


0 ∀x ≥ 0.∫ −x
0

dy

∫ y

0

ψk(u)du ∀x < 0.

By definition φk ∈ C2(R,R), and the first and second derivatives are given by,

φ′k(x) = −
−x∫
0

ψk(u)du.

φ′′k(x) = ψk(−x).

Define x̄ = −x if x < 0. If x ≥ 0, define x̄ = 0. We claim that for every x ∈ R,

x̄ − ak−1 ≤ φk(x) ≤ x̄. If x ≥ 0, then φk(x) = 0. In this case the claim holds correct.

Since supp(ψk) ⊂ (ak, ak−1), for every x > −ak, φ′k(x) = 0. Again, by condition 3,

−1 ≤ φ′k(x). Therefore we obtain,

− 1 ≤ φ′k(x) ≤ 0 ∀ −∞ < x < −ak. (5.4)
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Hence,

x̄− ak−1 =

∫ ak−1

−x
−1du ≤

∫ 0

−x
−1du =

∫ x

0

−1du ≤
∫ x

0

φ′k(x) = φk(x). (5.5)

Assume that y(s) < 0 for s ∈ (τ, T ]. Then, we have,

dφk(y(t)) = φ′k(y(t))y′(t)

= φ′k(y(t))×

γV +
α

τ

 t∫
t−τ

√
y(s) dB(s)

2

− (α + γ)y(t)

 dt.

Therefore,

φk(y(t)) = φk(y(τ)) +

∫ t

τ

φ′k(y(s))×

γV +
α

τ

 s∫
s−τ

√
y(u) dB(u)

2

− (α + γ)y(s)

 ds

= γV

∫ t

τ

φ′k(y(s))ds− (α + γ)

∫ t

τ

φ′k(y(s))y(s)ds

+
α

τ

∫ t

τ

 s∫
s−τ

√
y(u) dB(u)

2

φ′k(y(s))ds.

≤ γV φk(y(t))− (α + γ)

∫ t

τ

ȳ(s)d(s)

− α

τ

∫ t

τ

 s∫
τ

√
y(u) dB(u)

2

ds.

Therefore,

φk(y(t)) ≤ 1

1− γV

−(α + γ)

∫ t

τ

ȳ(s)d(s)− α

τ

∫ t

τ

 s∫
τ

√
y(u) dB(u)

2

ds


Hence,

ȳ(t)−ak−1 ≤ φk(y(t)) ≤ 1

1− γV

−(α + γ)

∫ t

τ

ȳ(s)d(s)− α

τ

∫ t

τ

 s∫
τ

√
y(u) dB(u)

2

ds

 .

E(ȳ(t))− ak−1 ≤ E(φk(y(t))) ≤ α + γ

γV − 1

∫ t

τ

Eȳ(s)ds− α

τ(1− γV )

t∫
τ

s∫
τ

E|y(u)| du ds.
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Since |y(u)| is a positive function, and 1− γV < 0, we obtain,

E(ȳ(t)) ≤ ak−1 +
α + γ

γV − 1

∫ t

τ

Eȳ(s)ds− α(t− τ)

τ(1− γV )

t∫
τ

E|y(s)| ds. (5.6)

Therefore,

E(ȳ(t)) ≤ ak−1 + g

∫ t

τ

Eȳ(s)d(s) (5.7)

where g =
γτ + αt

τ(γV − 1)
> 0. Applying Gronwall’s inequality, we obtain,

E(ȳ(t)) ≤ ak−1 exp (g(t− τ)) (5.8)

Taking the limit k →∞, we get E(ȳ(t)) ≤ 0⇒ E(ȳ(t)) = 0. Therefore P(y(t) < 0) = 0 for

all t > τ . Hence y(t) is non negative almost everywhere. This completes the theorem.

We have achieved the objective of step 1 by proposition 5.1.1. In the next step we

prove that any solution of equation(5.2) is bounded. We state and prove it as a separate

lemma.

Lemma 5.1.2. If y(t) is a solution of equation (5.2) in the interval [τ, T ], then

E
(

sup
τ≤t≤T

|y(s)|2
)
≤ C(T ), (5.9)

where C(T ) is a constant that depends on T .

Proof. To make calculations easier we can re write equation (5.2) as,

dy

dt
= a+ by(t) + c

 t∫
t−d

√
y(s)dB(s)

2

. (5.10)

Let y(t) be a solution of equation (5.10). Define, yn(t) = y(T ∧ χn), where χn = T ∧
inf {t ∈ [τ, T ] : |yn(t)| ≥ n}. Then as n → ∞, χn → T . In addition, yn(t) satisfies the

following integral equation.

yn(t) = yn(d) + a(t− d) + b

∫ t

d

yn(s)ds+ c

∫ t

d

[∫ s

s−d

√
yn(u)dB(u)

]2
ds.
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Therefore,

|yn(t)|2 ≤ 4|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

|yn(s)|2 ds

+ 4c2(t− d)

∫ t

d

[∫ s

s−d

√
yn(u)dB(u)

]4
ds.

Taking supremum over the interval [d,t],

sup
[d,t]

|yn(t)|2 ≤ 4|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

|yn(s)|2 ds

+ 4c2(t− d) sup
[d,t]

∫ s

d

[∫ u

u−d

√
yn(v)dB(v)

]4
du.

Taking expectation on both sides,

E

(
sup
[d,t]

|yn(t)|2
)
≤ 4E|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

E

(
sup
[d,s]

|yn(v)|2
)

ds

+ 4c2(t− d)E
∫ t

d

[∫ u

u−d

√
yn(v)dB(v)

]4
du.

Therefore,

E

(
sup
[d,t]

|yn(t)|2
)
≤ 4E|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

E

(
sup
[d,s]

|yn(v)|2
)

ds

+ 4c2(t− d)

∫ t

d

36× d
∫ s

s−d
|yn(u)|2du ds.

= 4E|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

E

(
sup
[d,s]

|yn(v)|2
)

ds

+ 144c2d2(t− d)

∫ t

d

∫ s

s−d
E|yn(u)|2du ds.

≤ 4E|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

E

(
sup
[d,s]

|yn(v)|2
)

ds

+ 144c2d2(t− d)2
∫ t

0

E|yn(s)|2ds.

≤ 4E|yn(d)|2 + 4a2(t− d)2 + 4b2(t− d)

∫ t

d

E

(
sup
[d,s]

|yn(v)|2
)

ds

144c2d3(t− d)2 sup
[0,d]

E|φ(s)|2 + 144c2d2(t− d)2
∫ t

d

E|yn(s)|2ds.
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≤ 4E|yn(d)|2 + 4a2(t− d)2 + 144c2d3(t− d)2 sup
[0,d]

E|φ(s)|2[
4b2(t− d) + 144c2d2(t− d)2

∫ t

d

]
E sup

[d,s]

|yn(u)|2ds.

Applying Gronwall’s inequality to the above equation,

E

(
sup
[d,T ]

|yn(s)|2
)
≤ C(T )× exp (4b2(T − d)2 + 144c2d2(T − d)3), (5.11)

where C(T ) = 4E|yn(d)|2 + 4a2(T − d)2 + 144c2d3(T − d)2 sup
[0,d]

E|φ(s)|2. Passing the limit

n→∞, we obtain the desired result.

Remark 5.1.3. Note that in the proof of lemma 5.1.2, we did not use any Lipschitz conti-

nuity or linear growth condition. Therefore, lemma 5.1.2 is different from the analogous

proposition in chapter 3 (see proposition 3.3.2). In equation (5.2), the effect of squaring

the delay integral is got nullified by the
√
y(t) term inside the delay integral. We took

advantage of this mutually canceling effect of equation (5.2).

In order to complete step 2, we have to prove that y(t) is continuous for every t ∈ [τ, T ]

almost everywhere. We establish this as an application of Kolmogorov’s continuity crite-

rion. Firstly, we make a definition, and then state Kolmogorov’s continuity criterion. The

reader is requested to refer Measure, Probability and Mathematical finance [11] or lecture

notes by N. Berestycki [2] for more information on Kolmogorov’s continuity criterion.

Definition 5.1.4 (Modification.). A stochastic process X(t, ω) is called a modification

of the stochastic process Y (t) if, for every t,

X(t, ω) = Y (t, ω) a.s. (5.12)

Lemma 5.1.5 (Kolmogorov’s continuity criterion). Suppose that there exists constants

α, β,K > 0 such that,

E|X(t)−X(s)|α ≤ K|t− s|1+β a.s. (5.13)

for every t. Then there exists a continuous modification of X(t).
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Now, we state and prove any solution of equation (5.10) has a continuous modification.

Proposition 5.1.6. If y(t) is a solution of equation (5.10), then there exists a continuous

modification for y(t).

Proof. We shall prove that for any t1 > t2,

E|y(t1)− y(t2)|2 ≤ C × |t1 − t2|2

Then by applying lemma 5.1.5 we obtain the desired result. We have,

y(t1)− y(t2) = a(t1 − t2) + b

∫ t1

t2

y(s) ds+ c

∫ t1

t2

(∫ s

s−d

√
y(s)dB(u)

)2

ds.

Therefore,

|y(t1)− y(t2)|2 ≤ 3a2(t1 − t2)2 + 3b2
∣∣∣∣∫ t1

t2

y(s) ds

∣∣∣∣2 + 3c2

∣∣∣∣∣
∫ t1

t2

(∫ s

s−d

√
y(s)dB(u)

)2

ds

∣∣∣∣∣
2

.

≤ 3a2(t1 − t2)2 + 3b2(t1 − t2)
∫ t1

t2

|y(s)|2 ds

+ 3c2(t1 − t2)
∫ t1

t2

(∫ s

s−d

√
y(s)dB(u)

)4

ds.

Taking expectation on both sides we obtain,

E|y(t1)−y(t2)|2 ≤ 3a2(t1−t2)2+3b2(t1−t2)2E
(

sup
[0,T ]

|y(s)|2
)

+108d2c2(t1−t2)2E
(

sup
[0,T ]

|y(s)|2
)
.

Rearranging the terms we get,

E|y(t1)− y(t2)|2 ≤ C × (t1 − t2)2. (5.14)

C = 3a2+E

(
sup
[0,T ]

|y(s)|2
)

(3b2+108d2c2), which is bounded globally by lemma 5.1.2.

In the next proposition we assert the existence and uniqueness of equation (5.2).

Proposition 5.1.7. If equation (5.2) satisfies the condition γV > 1, then it has a unique

solution. In addition to that there exists a continuous modification to it.
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Proof. We essentially use ideas in the Theorem 3.3.1. We have,

F (t, y(t), Jy(t)) = γV − (α + γ)y(t) + (Jy(t))2 . (5.15)

Clearly, γV − (α + γ)y(t) is linearly growing and Lipschitz continuous (with respect to

y(t)). Therefore, it is enough to consider the function,

G(t, y(t), Jy(t)) = (Jy(t))2 . (5.16)

Therefore, for the successive approximates to converge, it is enough to get a bound on

E|yn+1(t)− yn(t)|2 in terms of |yn+1(t)− yn(t)| with the function (5.16) replacing (5.15).

Firstly, we show that the successive approximates are bounded globally. We have,

yn(t) = γV (t− τ)− (α + γ)

∫ t

τ

yn−1(s) ds+
α

τ

∫ t

τ

(∫ s

s−τ

√
yn−1(u) dB(u)

)2

ds. (5.17)

Hence,

|yn(t)|2 ≤ 3γ2V 2(t− τ)2 + 3(α + γ)2
∣∣∣∣∫ t

τ

yn−1(s) ds

∣∣∣∣2 +

3α2

τ 2

∣∣∣∣∣
∫ t

τ

(∫ s

s−τ

√
yn−1(u) dB(u)

)2

ds

∣∣∣∣∣
2

≤ 3γ2V 2(t− τ)2 + 3(α + γ)2(t− τ)

∫ t

τ

|yn−1(s)|2 ds+

3α2

τ 2
(t− τ)

∫ t

τ

(∫ s

s−τ

√
yn−1(u) dB(u)

)4

ds

∴ E|yn(t)|2 ≤ 3γ2V 2(t− τ)2 + 3(α + γ)2(t− τ)

∫ t

τ

E|yn−1(s)|2 ds

3α2

τ 2
(t− τ)

∫ t

τ

E
(∫ s

s−τ

√
yn−1(u) dB(u)

)4

ds

≤ 3γ2V 2(t− τ)2 + 3(α + γ)2(t− τ)

∫ t

τ

E|yn−1(s)|2 ds

108α2

τ
(t− τ)

∫ t

τ

∫ s

s−τ
E(yn−1(u))2 duds

≤ 3γ2V 2(t− τ)2 + 108α2(t− τ)2 sup
[0,τ ]

E|φ(s)|2 + 3(α + γ)2(t− τ)

∫ t

τ

E|yn−1(s)|2 ds

108
α2

τ
(t− τ)2

∫ t

τ

E|yn−1(s)|2 ds.
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Therefore,

E|yn(t)|2 ≤ C1 + C2

∫ t

τ

E|yn−1(s)|2 ds, (5.18)

where,

C1 = 3γ2V 2(t− τ)2 + 108α2(t− τ)2 sup
[0,τ ]

E|φ(s)|2, (5.19)

C2 = 3(α + γ)2(T − τ) + 108
α2

τ
(T − τ)2. (5.20)

Therefore,

max
1≤n≤k

E|yn(t)|2 ≤ C1 + C2

∫ t

τ

max
1≤n≤k

E|yn−1(s)|2 ds

≤ C3 + C2

∫ t

τ

max
1≤n≤k

E|yn−1(s)|2 ds,

where, C3 = C1+C2E sup[0,τ ] |φ(s)|2(T−τ). Therefore, by applying Gronwall’s ineqaulity,

max
1≤n≤k

E|yn(t)|2 ≤ C3 exp (C2(T − τ)). (5.21)

Since k is arbitrary,

E|yn(t)|2 ≤ C3 exp (C2(T − τ)). (5.22)

Therefore the successive approximates are globally bounded. Hence, by applying Hölder’s

inequality, isometry property, positiveness and boundedness of yn(t) by proposition 5.1.11,

E|yn+1(t)− yn(t)|2 ≤ E

∣∣∣∣∣
∫ t

τ

(∫ s

s−τ

√
yn(u) dB(u)

)2

ds−
∫ t

τ

(∫ s

s−τ

√
yn−1(u) dB(u)

)2

ds

∣∣∣∣∣
2

≤ (t− τ)E
∫ t

τ

[(∫ s

s−τ

√
yn(u) dB(u)

)2

−
(∫ s

s−τ

√
yn−1(u) dB(u)

)2
]2

ds

(5.23)

≤ K2(t− τ)

∫ t

τ

E
∣∣∣∣∫ s

s−τ

(√
yn(u)−

√
yn−1(u)

)
dB(u)

∣∣∣∣2 ds (5.24)

≤ K2(t− τ)

∫ t

τ

∫ s

s−τ
E
(√

yn(u)−
√
yn−1(u)

)2
du ds

≤ K2(t− τ)2
∫ t

τ

E|yn(s)− yn−1(s)| ds.

1In proposition 5.1.1 we proved non negativeness of y(t) only. But the same arguments in proposi-
tion 5.1.1, shows that the successive approximates are also non negative.
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Therefore,

E|yn+1(t)− yn(t)|2 ≤ K2(t− τ)2 sup
[τ,t]

E|yn(u)− yn−1(u)|. (5.25)

Now, exactly by following the steps of theorem 3.3.1, we obtain the desired conclusion.

Remark 5.1.8. Note that, to obtain (5.24) from (5.23), we used Lipschitz continuity of

the square function with respect to yn(t). This is perfectly justified since successive

approximates are bounded globally for t ∈ [0, T ].

5.2 Numerical illustration

In the previous section we showed that (5.10) has a unique solution. In this section, we

use the numerical method developed in chapter 3, namely Euler - Maruyama method (see

section 4.1.1) to obtain numerical solutions which approximate the unique true solution

to (5.2). Firstly, we recall equation(5.2).

dy(t)

dt
= γV +

α

τ

 t∫
t−τ

√
y(s) dB(s)

2

− (α + γ)y(t). (5.26)

We discretize equation (5.26) as,

yi+1 = yi +
(
γV +

α

τ
(Jyi)

2 − (α + γ)yi

)
h, (5.27)

Jyi =
i−M∑
j=i−1

√
yjζj.

for i = M + 1,M + 2, · · · , N . Here ζj are N(0, h) distributed random variables. Firstly,

we present three sample paths generated (figure 5.2) for the equation (5.26) with α =

0.1, γ = 1 and V = 2. We fix delay time as
1

2
units and mesh size as 0.01. The reader is

requested to see section A.2 for details of the program.

If we take expectation on both sides of the equation (5.26), then we obtain the below

given equation.

du(t)

dt
= γV +

α

τ

t∫
t−τ

u(s) ds− (α + γ)u(t). (5.28)

where u(t) = Ey(t). Equation (5.28) is a deterministic delay equation. In can be dis-
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Figure 5.1: Path wise realizations of discretized equation (5.27) with α = 0.1, γ = 1 and
V = 2.

cretized as,

ui+1 = ui +

γV +
α

τ

ti∫
ti−τ

u(s) ds− (α + γ)ui

h. (5.29)

Here h is the mesh size. With α, γ, τ and V as defined earlier, we solve discretization

5.29. Similarly we sample 5000 paths of discretization 5.29 and calculate the mean value

for each t. We compare both, and find they are matching (figure 5.2). The reader is

requested to see section A.3 details of the program. Discretization (5.29) and (5.27) are

implemented with the mesh size of 0.01. Noe that, the deterministic delay integral in

equation (5.29) is calculated using Simpson’s
1

3
rule so that, error in evaluating the delay

integral will be of the order of 10−8 [22]. Figure 5.2 shows the exact matching of the

sample average and the expected value calculated using equation (5.29). This indicates

the weak convergence of the numerical solution to the exact solution. In the next section,

we show an industrial application of equation (5.1).

56



Figure 5.2: Figure showing the sample average of discretization 5.27 and expected value
calculated using equation (5.29). Note the exact matching of the two curves.

5.3 Volatility prediction of S&P500 index.

The continuous delay model is of the form,

dσ2(t, St)

dt
= γV +

α

τ

 t∫
t−τ

σ(s, Ss) dB(s)

2

− (α + γ)σ2(t, St). (5.30)

We consider the variation of stock value of S&P 500 index from January 1, 1992 to

December 30, 1993. For this data, equation (5.30) was calibrated by Yuriy Kazmerchuk

[15]. We quote the data here,

V = 0.007344, γ = 0.1049, α = 0.0446, β = 0.8505. (5.31)

With these information, equation (5.30) is of the form,

dσ2(t, St)

dt
=
(
7.7044× 10−4

)
+

0.0446

τ

 t∫
t−τ

σ(s, Ss) dB(s)

2

− 0.1495σ2(t, St). (5.32)

We predicted the volatility at December 31, 1993, by solving the above equation by the

numerical scheme (4.2). We repeat the calculation for different delay times. We found
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that, for larger delay times, error in the predicted volatility (from actual value) tend to

reduce. This substantiates our hypothesis that, considering more historical information

will reduce the error in future predictions (see table 5.3). Moreover, we compared the pre-

dicted value of the volatility by equation (5.30) with the predicted value by GARCH(1,1)

scheme. We define the error as |True value - Predicted value|. GARCH(1,1) scheme is of

the form,

σ2
n = ω + αu2n−1 + βσ2

n−1 (5.33)

We calibrated the coefficients, ω, α and β with the standard program by Prof. John.

C. Hull (http://www-2.rotman.utoronto.ca/ hull/ofod/GarchExample/index.html). The

values obtained are,

ω = 1.3195× 10−6, α = 0.050244, β = 0.910105. (5.34)

We found that the error is much lower for prediction by (5.30). This illustrates the

robustness of our model. The numerical data is tabulated below. For the GARCH(1,1)

Delay time (days) Predicted volatility Absolute error

200 0.6045 0.0134

250 0.5658 0.0254

300 0.5450 0.0460

350 0.5531 0.0379

400 0.5705 0.0205

450 0.6888 0.0977

500 0.6619 0.0708

504 0.6028 0.0117

Table 5.1: Table showing the volatility prediction by equation (5.30) for December 31,
1992. True value of volatility is 0.5911.

process, the predicted volatility is 0.5487. Therefore, the error is 0.0424, which is larger

than the predicted value by equation (5.30).

Therefore, from the above calculations we obtained the following results.

� As the delay time increases, error in the predicted volatility tend to reduce, though
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not monotonically.

� Continuous GARCH model proposed by Yuriy Kazmerchuk gives more accurate

value of the future volatility.

The above two results shows the correctness of our hypotheses. Thus, we can see

continuous GARCH model is a better tool to predict the future volatility. With this

statement, we end chapter 5.

baaac
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Appendix A

Programs

In this chapter we present important codes and programs developed by us for implement-

ing numerical schemes derived in the previous chapters. All simulations and calculations

in this project were carried out in MATLAB R2011b. For easier understanding, all

steps are properly commented. Each program is given as a separate section, and a short

note is added at the beginning to specify the aims and objectives of the corresponding

program.

A.1 Program for error analysis of equation 1

This program samples 3000 paths of the solution of equation 1 for five different step sizes,

viz., h = 2−9, 2−8, 2−7, 2−6 and 2−5. After each run the code will return average value of

the solution at the instant t = 2 and the error from the exact expected value which can

be analytically computed. After the run is initiated, the system will ask the user to input

value of a variable p. For a particular value of p, the step size will be 2p−10.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Author : Gopikrishnan C. R. %
3 % S.visor: Dr. M. P. Rajan %
4 % Subj. : Numerical solution of SDIDE. %
5 % Date : 4/14/2015 %
6 % Venue : IISER Thiruvananthapuram %
7 % Scheme : Comparison of expected value. %
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9
10 randn('state',100)
11
12 %%%%%%%%%% Parameters and Variables %%%%%%%%%%
13
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14 % User can input p, varying from 1 to 5. As p
15 % increases step size increases, by 2 fold.
16
17 prompt = 'Enter the value of p -> ';
18 p = input(prompt);
19
20 h = 2ˆ-9;
21 Tdel = 1;
22 Tfin = 2;
23 Tin = 0;
24 N = (Tfin - Tin)/h;
25 M = Tdel/h;
26 R = 2ˆ(p -1);
27 htotal = 0;
28 iter = 3000;
29
30 %%%%%%%% Euler - Maruyama Iterations %%%%%%%%%
31 for num iter = 1:iter
32
33 dW = sqrt(h)*randn(1,N); % White noise is defined as
34 % N(0,h) random variables.
35 W = [0,cumsum(dW)]; % Brownian path as a cumulative
36 % sum of white noise.
37 H = R*h; K = M/R; L =N/R; % Rescaling delay time and final time.
38 hsoln = ones(1,L+1); % Solution array.
39 htmesh = [0:H:Tfin]; % Proportional time mesh.
40
41 for i = 1:K+1
42 hsoln(i) = htmesh(i) + 1; % Definitions of initial condition on [0,Tdel)
43 end
44
45 for i = K+1:L
46 hdelint = 0;
47
48 for j = i - K:i - 1
49 hwinc = sum(dW(R*(j-1) + 1:R*j)); % Rescaled Brownian increment.
50 hdelint = hdelint + hsoln(j)*hwinc; % Iterative sum finaly gives
51 end % the stochastic delay
52 % integral.
53 hsoln(i+1) = hsoln(i) + H + hdelint*H; % E-M iterations.
54 end
55
56 htotal = htotal + hsoln(end);
57 end
58 %%%%%% end of Euler - Maruyama Iterations %%%%%%
59
60 Average value = htotal/iter % Return the average value.
61 error = abs(Average value - 3) % Return the error.
62
63 %%%%%%%%%%%%%% end of programme %%%%%%%%%%%%%%%%

Remark A.1.1. Error analysis of test equation 2 was also carried out using the code A.3.

User has to remove the initial condition and discretization of test equation 1 defined in

step 44 and 55 respectively and insert the corresponding data for test equation 2. If the
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delay integral is also different, then the discretization of it defined in step 52 of code A.3

also has to be altered.

A.2 Program for scenario simulation of discretiza-

tion 5.27

1 (* ::Package:: *)
2
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Author : Gopikrishnan C. R. %
5 % S.Visor: Dr. M. P. Rajan %
6 % Subj. : Numerical solution of SDIDE %
7 % Date : 4/14/2015 %
8 % Venue : IISER Thiruvananthapuram %
9 % Scheme : Pathwise simulation of %
10 % volatility equation %
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12
13 %%%%% Parameters and Initial Conditions %%%%%%
14
15 h = 0.01;
16 Tdel = 0.5;
17 Tfin = 5;
18 Tin = 0;
19 N = (Tfin - Tin)/h;
20 M = Tdel/h;
21 R = 1;
22 gam = 1;
23 al = 0.1;
24 V = 2;
25
26 %%%%%%%% Euler - Maruyama Iterations %%%%%%%%%
27
28 dW = sqrt(h)*randn(1,N); % White noise is defined as
29 % N(0,h) random variables.
30 W = [0,cumsum(dW)]; % Brownian path as a cumulative
31 % sum of white noise
32 H = R*h; K = M/R; L =N/R; % Rescaling delay time and final time.
33 hsoln = ones(1,L+1); % solution array
34 htmesh = [0:H:Tfin]; % proportional time mesh
35
36 for i = 1:K+1
37 hsoln(i) = htmesh(i) + 1; % Definitions of initial condition on [0,Tdel)
38 end
39
40 for i = K+1:L
41 hdelint = 0;
42
43 for j = i - K:i - 1
44 hwinc = sum(dW(R*(j-1) + 1:R*j)); % Rescaled Brownian increment.
45 hdelint = hdelint + sqrt(hsoln(j))*hwinc; % Iterative sum finaly gives
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46 end % the stochastic delay
47 % integral.
48 % E-M iterations
49 hsoln(i+1) = hsoln(i) + (gam*V + (al/Tdel)*hdelintˆ2 - (al + gam)*hsoln(i))*H;
50 end
51
52 %%%%%% end of Euler - Maruyama Iterations %%%%%%
53
54 %%%%%%%%%%%%%% end of programme %%%%%%%%%%%%%%%%

A.3 Program for calculating expected value of dis-

cretization 5.27

1 (* ::Package:: *)
2
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Author : Gopikrishnan C. R. %
5 % S.Visor: Dr. M. P. Rajan %
6 % Subj. : Numerical solution of SDIDE %
7 % Date : 4/14/2015 %
8 % Venue : IISER Thiruvananthapuram %
9 % Scheme : Average value of volatility %
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11
12 %%%%% Parameters and Initial Conditions %%%%%%
13
14 h = 0.01;
15 Tdel = 0.5;
16 Tfin = 5;
17 Tin = 0;
18 N = (Tfin - Tin)/h;
19 M = Tdel/h;
20 R = 1;
21 gam = 1;
22 al = 0.1;
23 V = 2;
24 hsolnmat = ones(5000,N+1); % 5000 by N+1 array to store 3000 samples
25 % of numerical solution consiting of
26 % N+1 discrete values.
27
28 %%%%%%%% Euler - Maruyama Iterations %%%%%%%%%
29
30 for iter = 1:5000
31
32 dW = sqrt(h)*randn(1,N); % White noise is defined as
33 % N(0,h) random variables.
34 W = [0,cumsum(dW)]; % Brownian path as a cumulative
35 % sum of white noise
36 H = R*h; K = M/R; L =N/R; % Rescaling delay time and final time.
37 hsoln = ones(1,L+1); % solution array
38 htmesh = [0:H:Tfin]; % proportional time mesh
39
40 for i = 1:K+1
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41 hsoln(i) = htmesh(i) + 1; % Definitions of initial condition on [0,Tdel)
42 hsolnmat(iter,i) = hsoln(i);
43 end
44
45 for i = K+1:L
46 hdelint = 0;
47
48 for j = i - K:i - 1
49 hwinc = sum(dW(R*(j-1) + 1:R*j)); % Rescaled Brownian increment.
50 hdelint = hdelint + hsoln(j)*hwinc; % Iterative sum finaly gives
51 end % the stochastic delay
52 % integral.
53 hsoln(i+1) = hsoln(i) + (gam*V + (al/Tdel)*hdelintˆ2 - (al + gam)*hsoln(i))*H;

% E-M iterations.
54 hsolnmat(iter,i+1) = hsoln(i+1);
55 end
56
57 end
58
59 %%%%%% end of Euler - Maruyama Iterations %%%%%%
60
61 %%%%%%%%%%%%%% end of programme %%%%%%%%%%%%%%%%

baaac
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[2] Nathanaël Berestycki. Stochastic calculus and applications.

[3] Peter Brockwell, Erdenebaatar Chadraa, Alexander Lindner, et al. Continuous-time

garch processes. The Annals of Applied Probability, 16(2):790–826, 2006.

[4] C. Corduneanu and I. Sandberg. Volterra Equations and Applications. Stability and

Control: Theory, Methods and Applications. Taylor & Francis, 2000.

[5] Valentina Corradi. Reconsidering the continuous time limit of the garch (1, 1) pro-

cess. Journal of Econometrics, 96(1):145–153, 2000.

[6] Feike C Drost and Bas JM Werker. Closing the garch gap: Continuous time garch

modeling. Journal of Econometrics, 74(1):31–57, 1996.

[7] Jin-Chuan Duan, Peter Ritchken, and Zhiqiang Sun. Approximating garch-jump

models, jump-diffusion processes, and option pricing. Mathematical Finance,

16(1):21–52, 2006.

[8] Aryeh Dvoretzky, Paul Erdös, and Shizuo Kakutani. Nonincrease everywhere of the

brownian motion process. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob,

volume 2, pages 103–116, 1961.

[9] L. C. Evans. An Introduction to Stochastic Differential Equations. American Math-

ematical Society, 2012.

[10] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions.

Studies in Advanced Mathematics. Taylor & Francis, 1991.

65



[11] G. Gan, C. Ma, and H. Xie. Measure, Probability, and Mathematical Finance: A

Problem-Oriented Approach. Wiley, 2014.

[12] Kondalsamy Gopalsamy. Stability and oscillations in delay differential equations of

population dynamics. Springer Science & Business Media, 1992.

[13] TE Govindan. Successive approximations to solutions of stochastic functional differ-

ential equations. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE

SYSTEMS SERIES A, 8:193–202, 2001.

[14] Tim Hopkins. Numerical solution of stochastic delay integrodifferential equations in

population dynamics. 2004.

[15] Yuriy Kazmerchuk, Anatoliy Swishchuk, and Jianhong Wu. A continuous-time garch

model for stochastic volatility with delay. Canadaian Applied Mathematics Quar-

terly, 13(2):123 – 149, 2005.

[16] John Lamperti. A simple construction of certain diffusion processes. Journal of

Mathematics of Kyoto University, 4(1):161–170, 1964.

[17] Min-Ku Lee, Jeong-Hoon Kim, and Joocheol Kim. A delay financial model with

stochastic volatility; martingale method. Physica A: Statistical Mechanics and its

Applications, 390(16):2909 – 2919, 2011.

[18] X. Mao. Stochastic Differential Equations and Applications. Elsevier Science, 2007.

[19] MG Murge and BG Pachpatte. Explosion and asymptotic behavior of nonlinear ito

type stochastic integrodifferential equations. Kodai mathematical journal, 9(1):1–18,

1986.

[20] MG Murge, BG Pachpatte, et al. On generalized itô type stochastic integral equation.
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nowhere differentiable, 7
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